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ABSTRACT

Brian Balut
DATA FUSION BASED OPTIMAL EEG ELECTRODE SELECTION FOR

EARLY DIAGNOSIS OF ALZHEIMER'S DISEASE
2007/08

Dr Robi Polikar
Master of Science in Electrical Engineering

As medicinal and technological advances lengthen the average human life span, diseases

affecting the elderly such as Alzheimer's disease and Parkinson's disease are seeing

increasingly growing numbers, especially in developed countries. As a result, the

necessity for an accurate, inexpensive, noninvasive means of diagnosis becomes

particularly important, since such a method is not readily available to the general

population. One biomarker that has recently showed promise is the analysis of the

electroencephalogram (EEG).

Over the course of two studies, more than 130 subjects have been recruited

providing information from 16-19 EEG electrodes for each subject. These signals have

been decomposed using the wavelet transform to be used in a pattern recognition and

classification algorithm to serve as a diagnostic tool for Alzheimer's disease. Through

the use of multilayer perceptrons and support vector machines, classifiers were generated

on different portions of the EEG. These classifiers are then combined using combination

methods such as sum rule, product rule, simple and weighted majority voting.
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Classification performance for Cohort A was 88.7%, an increase of more than 5%

over previous work in this study. Classification performance for Cohort B was 93.6%

and the classification performance for both cohorts combined together was 82.7%. These

classification performances exceed the diagnostic accuracy of community clinics (75%)

and are close to diagnostic accuracy available at research and university hospitals (90%).



www.manaraa.com

TABLE OF CONTENTS

LIST OF FIGURES ................................................... ..... vi
LIST OF TABLES .......... ........... .......... ..... x

CHAPTER 1 INTRODUCTION ....................................... ............ 1
1.1 ALZHEIMER'S DISEASE ...................................... ............. 1

1.1.1 PATHOLOGY OF ALZHEIMER'S DISEASE ................... 4
1.2 OBJECTS OF THIS STUDY .................................... ............7
1.3 ORGANIZATION OF THIS THESIS....................... ............ 8

CHAPTER 2 BACKGROUND .......................................... ............. 9
2.1 BIOCHEMICAL ANALYSIS .................................. .............9
2.2 NEUROIMAGING ................................................... ............ 10
2.3 ELECTROENCEPHALOGRAM .................. .............. 13

2.3.1 SPECTRAL CONTENT OF THE EEG........................15
2.4 ACQUISITION PROTOCOLS AND EVENT RELATED POTENTIALS..17
2.5 P300 RESEACH ...................................... 21

2.5.1 WAVELET P300 ANALYSIS........................23
2.6 ERPS IN ALZHEIMER'S DISEASE RESEARCH....................25
2.7 ALZHEIIER'S DISEASE CLASSIFICATION......................28

CHAPTER 3 METHODS ..... ............ .......... ..... 35
3.1 PREVIOUS RESEARCH IN THIS STUDY............. ............35
3.2 CURRENT RESEARCH......................................36
3.3 RESEARCH SUBJECTS............................................................... 38
3.4 DATA ACQUISITION.................................................................41
3.5 FEATURE EXTRACTION............................................................45
3.6 WAVELET TRANSFORMS .......................................................... 47

3.6.1 CONTINUOUS WAVELET TRANSFORM..................................47
3.6.2 WAVELET SERIES ............................................................. 52
3.6.3 DISCRETE WAVELET TRANSFORM ....................................... 54
3.6.4 MULTIRESOLUTION ANALYSIS ........................................... 54
3.6.5 SUBBAND CODING ............................................................ 56
3.6.7 RECONSTRUCTION OF THE SIGNAL......................................59
3.6.8 DAUBECHIES WAVELET..................................................... 59

3.7 CLASSIFICATION AND PATTERN RECOGNITION...........................63
3.7.1 MULTILAYER PERCEPTRONS...............................................63
3.7.2 SUPPORT VECTOR MACHINES ......................................... 68

iv



www.manaraa.com

3.7.4 K-FOLD CROSS-VALIDATION.......... ...................77
3.8 DATA FUSION ......................................................... ........... 78

3.8.1 ENSEMBLE OF CLASSIFIERS............ ..................78
3.8.2 COMBINATION RULES .............................. .............80
3.8.3 DEMPSTER-SHAFER COMBINATION RULE .................. 81

3.9 MEDICAL DIAGNOSTIC MEASURES ........................... 82

CHAPTER 4 RESULTS.............................................. ............... 84
4.1 SINGLE CLASSIFER RESULTS FROM COHORT A USING MLPS......84
4.2 SINGLE CLASSIFER RESULTS FROM COHORT B USING MLPS......87
4.3 SINGLE CLASSIFER RESULTS FROM COHORT A USING SVMS......90
4.4 SINGLE CLASSIFER RESULTS FROM COHORT B USING SVMS......92
4.5 DATA FUSION RESULTS FROM COHORT A USING MLPS ........... 94
4.6 DATA FUSION RESULTS FROM COHORT A USING SVMS .......... 105
4.7 DATA FUSION RESULTS FROM COHORT B USING MLPS .......... 110
4.8 DATA FUSION RESULTS FROM COHORT B USING SVMS .......... 113
4.9 20% TEST RESULTS FROM COHORT A............ ............. 116
4.10 20% TEST RESULTS FROM COHORT B........................124
4.11 MIXED COHORT RESULTS .............................. ............. 127

4.11.1 CROSS COHORT FEATURE SELECTION .............................. 130
4.11.2 CROSS COHORT REANALYSIS...........................................131

CHAPTER 5 CONCLUSIONS.............................................................13 5
5.1 SUMMARY OF ACCOMPLISHMENTS .......................................... 135
5.2 SOURCES OF ERROR...............................................................142
5.3 RECOMMENDATIONS FOR FUTURE WORK ................................. 143

REFERENCES ............................................................................... 145

APPENDICES ................................................................................ 153
APPENDIX A: ERP GRAND AVERAGES FROM COHORT A...................153
APPENDIX B : ERP GRAND AVERAGES FROM COHORT B ................... 163



www.manaraa.com

LIST OF FIGURES

Figure 1.1: Atrophy of a patient's brain through preclinical, mild, and severe stages of
A lzheim er's disease [12]..................................................................................................6

Figure 2.1: International 10/20 System of electrode placement [31]..........................14
Figure 2.2: Sample ERP signal with components labeled .......................................... 19
Figure 2.3: Comparison of ERPs of normal and AD subjects ............................................ 21

Figure 3.1: Flowchart showing the overview of the approach .................................... 38
Figure 3.2: Example of artifact removal ................................. ........................ 43
Figure 3.3: Comparison between the data from Cohort A after artifact removal and the
data from Cohort B after artifact removal ..................................... 44
Figure 3.4: V arious w avelets ............................................................................................ 49
Figure 3.5: Mexican hat wavelet showing the effects of different scales and
translations .................................................................................... ............................... 5 1
Figure 3.6: Flow of an ERP signal through the discrete wavelet process .................. 58
Figure 3.7: Daubechies wavelets with 2, 4, 6, and 8 vanishing moments .................. 60
Figure 3.8: db4 scaling and wavelet functions along with decomposition and
reconstruction filters .................................................... ............................................... 61
Figure 3.9: Wavelet decomposition of a subject's ERP ............................................. 62
Figure 3.10: General model of a multilayer perceptron network ................................ 64
Figure 3.11: Example of two linearly separable classes and the maximal margin between
th em .................................................................................................................................... 7 1
Figure 3.12: Effects of slack variables for non-linearly separable data ...................... 73
Figure 3.13: K -fold cross-validation ................................................................................ 77
Figure 3.14. Model of an ensemble of classifiers system ................................................ 79

Figure 4.1: Method of selection of three-tuples from target and novel for use in mixed
stim uli ensem bles .............................................................................................................. 97
Figure 4.2: Example of how the selection method from Figure 4.1 works ................... 100
Figure 4.3: Distribution of most frequently occurring target electrode responses in
combinations of three performing better than 70% using MLPs for Cohort A ............. 103
Figure 4.4: Distribution of most frequently occurring novel electrode responses in
combinations of three performing better than 75% using MLPs for Cohort A ............. 104
Figure 4.5: Distribution of most frequently occurring target electrode responses in
combinations of three performing better than 64% using SVMs for Cohort A .............. 106
Figure 4.6: Distribution of most frequently occurring novel electrode responses in
combinations of three performing better than 68% using SVMs for Cohort A ............. 107
Figure 4.7: Alternate selection method for choosing three-tuples ................................. 109
Figure 4.8: Distribution of most frequently occurring target electrode responses in
combinations of three performing better than 67% using MLPs for Cohort B ........... 111

vi



www.manaraa.com

Figure 4.9: Distribution of most frequently occurring novel electrode responses in
combinations of three performing better than 70% using MLPs for Cohort B..............112
Figure 4.10: Distribution of most frequently occurring target electrode responses in
combinations of three performing better than 69% using SVMs for Cohort B..............114
Figure 4.11: Distribution of most frequently occurring novel electrode responses in
combinations of three performing better than 72% using SVMs for Cohort B..............114
Figure 4.12: Scalp histogram from 20% test data method from target responses using
M LPs for C ohort A ........................................................................... ........................ 120
Figure 4.13: Scalp histogram from 20% test data method from novel responses using
M L Ps for C ohort A ......................................................................................................... 120
Figure 4.14: Scalp histogram from 20% test data method from target responses using
SV M s for C ohort A ......................................................................................................... 123
Figure 4.15: Scalp histogram from 20% test data method from novel responses using
SV M s for C ohort A ......................................................................................................... 124
Figure 4.16: Scalp histogram from 20% test data method from target responses using
SV M s for C ohort B ........................................................................... ........................ 126
Figure 4.17: Scalp histogram from 20% test data method from novel responses using
SV M s for C ohort B ........................................................................... ........................ 126

Figure 5.1: Target scalp histograms from both cohorts ............................................ 139
Figure 5.2: Novel scalp histograms from both cohorts ............................................. 140
Figure 5.3: Most frequently appearing electrodes in response to target stimuli with no
relation to frequency bands ............................................................................................. 141
Figure 5.4: Most frequently appearing electrodes in response to novel stimuli with no
relation to frequency bands ............................................................................................. 142

Figure A. 1: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the C3 electrode from Cohort A .......................................... ....................... 153
Figure A.2: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the C4 electrode from Cohort A ................................................................................ 154
Figure A.3: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the CZ electrode from Cohort A ............................................................................... 154
Figure A.4: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the F3 electrode from Cohort A ................................................................................ 155
Figure A.5: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the F4 electrode from Cohort A ................................................................................ 155
Figure A.6: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the F7 electrode from Cohort A ................................................................................ 156
Figure A.7: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the F8 electrode from Cohort A .............................................................................. 156
Figure A.8: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the FP 1 electrode from Cohort A ............................................................................ 157
Figure A.9: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the FP2 electrode from Cohort A ............................................................................ 157
Figure A. 10: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the FZ electrode from Cohort A................ ........................ 158

vii



www.manaraa.com

Figure A. 11: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the 01 electrode from Cohort A................................. ..................... 158
Figure A. 12: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the 02 electrode from Cohort A.............................. ...................... 159
Figure A. 13: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the P3 electrode from Cohort A ............................. ..................... 159
Figure A.14: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the P4 electrode from Cohort A ............................. ..................... 160
Figure A. 15: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the P7 electrode from Cohort A ............................. ..................... 160
Figure A. 16: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the P8 electrode from Cohort A ................................ ..................... 161
Figure A. 17: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the PZ electrode from Cohort A................................... ............................ 161
Figure A. 18: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the T7 electrode from Cohort A.............................. ..................... 162
Figure A.19: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the T8 electrode from Cohort A................................ ..................... 162
Figure B. 1: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the C3 electrode from Cohort B .......................................... ...................... 163
Figure B.2: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the C4 electrode from Cohort B ................................................................................ 164

Figure B.3: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the CZ electrode from Cohort B ........................................... ...................... 164
Figure B.4: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the F3 electrode from Cohort B ........................................... ...................... 165
Figure B.5: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the F4 electrode from Cohort B ........................................... ...................... 165
Figure B.6: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the FP1 electrode from Cohort B ............................................................................. 166
Figure B.7: Grand average ERP from responses to target (top) and novel (bottom)

stimuli for the FP2 electrode from Cohort B ................................................................. 166
Figure B.8: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the FZ electrode from Cohort B ............................................................................... 167
Figure B.9: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the OZ electrode from Cohort B .............................................................................. 167
Figure B.10: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the P3 electrode from Cohort B ................................................................... 168
Figure B. 11: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the P4 electrode from Cohort B ................................................................. 168
Figure B. 12: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the P7 electrode from Cohort B ................................................................. 169
Figure B13: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the P8 electrode from Cohort B ................................................................. 169
Figure B. 14: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the PZ electrode from Cohort B ................................................................. 170

viii



www.manaraa.com

Figure B. 15: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the T7 electrode from Cohort B ................................................. 170
Figure B.16: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the T8 electrode from Cohort B ................................................. 171

ix



www.manaraa.com

LIST OF TABLES

Table 3.1: Cohort details including the number of patients, average ages and standard
deviations, and average MMSE scores and standard deviations ................................. 41
Table 3.2: Breakdown of the number of coefficients in the different levels of detail and
approximation on the 256 Hz signal .............................................. 76
Table 3.3: Chart of how test performance metrics are derived........................... 82

Table 4.1: Results for classifiers trained on target stimuli responses from all 19 electrodes
at all 3 feature levels for the subjects in Cohort A using MLPs .............................. 85
Table 4.2: Results for classifiers trained on novel stimuli responses from all 19 electrodes
at all 3 feature levels for the subjects in Cohort A using MLPs .................................. 86
Table 4.3: Results for classifiers trained on target stimuli responses from all 16 electrodes
at all 3 feature levels for the subjects of Cohort B using MLPs .................................. 88
Table 4.4: Results for classifiers trained on novel stimuli responses from all 16 electrodes
at all 3 feature levels for the subjects of Cohort B using MLPs .................................. 89
Table 4.5: Results for classifiers trained on target stimuli responses from all 19 electrodes
at all 3 feature levels for the subjects of Cohort A using SVMs..................................90
Table 4.6: Results for classifiers trained on novel stimuli responses from all 19 electrodes
at all 3 feature levels for the subjects of Cohort A using SVMs .................................. 91
Table 4.7: Results for classifiers trained on target stimuli responses from all 16 electrodes
at all 3 feature levels for the subjects of Cohort B using SVMs .................................. 92

Table 4.8: Results for classifiers trained on novel stimuli responses from all 16 electrodes
at all 3 feature levels for the subjects of Cohort B using SVMs .................................. 93
Table 4.9: Best performing ensembles for target and novel responses for ensembles of
3,5, and 7 classifiers trained using MLPs for Cohort A....................................................95
Table 4.10: Best performing ensembles for mixed stimuli ensembles of 3,5, and 7
classifiers trained using M LPs for Cohort A .................................................................... 98
Table 4.11: Top performing ensembles of 7 from mixed stimuli using 3 fold cross
validation trained with M LPs for Cohort A .................................................................... 101
Table 4.12: Top performing ensembles of 7 from mixed stimuli using 5 fold cross
validation trained with MLPs for Cohort A..................................................................101
Table 4.13: Top performing ensembles of 7 from mixed stimuli using 10 fold cross
validation trained with M LPs for Cohort A .................................................................... 101
Table 4.14: Top performing ensembles of 7 from mixed stimuli using leave-one-out or
71-fold cross validation trained with MLPs for Cohort A..............................................102
Table 4.15: New selection of three-tuples based on larger sample size as compared to
original selection of three-tuples using MLPs for Cohort A......................................104
Table 4.16: Top 5 performing ensembles using the new selection of three-tuples using
M L P s for C ohort A .......................................................................................................... 105

Table 4.17: Top 5 performing ensembles using the top 6 three-tuples each from target and
novel responses using SVMs for Cohort A............... ........................ 108

x



www.manaraa.com

Table 4.18: Top 5 performing ensembles using the top 15 three-tuples from target
responses using SVMs for Cohort A ......................................... ...................... 109
Table 4.19: Top 5 performing ensembles using the top 15 three-tuples from novel
responses using SVMs for Cohort A ................................................... ......... .... 109
Table 4.20: Top 5 performing ensembles using the top 15 three-tuples from target and
novel responses combined using SVMs for Cohort A...............................................110
Table 4.21: Top 5 performing ensembles for Cohort B using the top 6 three-tuples each
from target and novel responses using MLPs for Cohort B.......................................113
Table 4.22: Top 5 performing ensembles for Cohort B using the top 6 three-tuples each
from target and novel responses using SVMs for Cohort B ...................................... 115
Table 4.23: Top 5 performing ensembles using the top 15 three-tuples from target
responses using SVMs for Cohort B......................................... ...................... 115
Table 4.24: Top 5 performing ensembles using the top 15 three-tuples from novel
responses using SVMs for Cohort B......................................... ...................... 116
Table 4.25: Top 5 performing ensembles using the top 15 three-tuples from target and
novel responses combined using SVMs for Cohort B ............................................... 116
Table 4.26: Classification performance from 20% test method using MLPs for
C oh ort A ........................................................................................................................... 118
Table 4.27: Three-tuples used in the best ensemble for each trial and fold of the 20%
method using M LPs for Cohort A ........................................ ..................................... 119
Table 4.28: Classification performance from 20% test method using SVMs for
C ohort A ..................................................................................... ................................ 12 1
Table 4.29: Three-tuples used in the best ensemble for each trial and fold of the 20%
method using SVM s for Cohort A ......................................... .................................... 122
Table 4.30: Classification performance from 20% test method using SVMs for
C oh ort B ........................................................................................................................... 124

Table 4.31: Three-tuples used in the best ensemble for each trial and fold of the 20%
method using SVMs for Cohort B .................................................. 125
Table 4.32: Results for classifiers trained on target stimuli responses from all 16
electrodes at all 3 feature levels for the subjects of both cohorts using SVMs .............. 127
Table 4.33: Results for classifiers trained on novel stimuli responses from all 16
electrodes at all 3 feature levels for the subjects of both cohorts using SVMs .............. 128
Table 4.34: Top 5 performing ensembles using the top 15 three-tuples from target
responses using SVM s for both cohorts ......................................................................... 129
Table 4.35: Top 5 performing ensembles using the top 15 three-tuples from novel
responses using SVM s for both cohorts ......................................................................... 129
Table 4.36: Top 5 performing ensembles using the top 15 three-tuples from target and
novel responses combined using SVMs for both cohorts...............................................129
Table 4.37: SVM classifiers trained on Cohort B and tested on Cohort A using the best
ensem bles from Cohort B ............................................................................................. 130
Table 4.38: SVM classifiers trained on Cohort A and tested on Cohort B using the best
ensembles from Cohort A..........................................131
Table 4.39: Top 5 performing ensembles using the top 15 three-tuples from target
responses using SVMs trained on Cohort B, tested on Cohort A................132
Table 4.40: Top 5 performing ensembles using the top 15 three-tuples from novel
responses using SVMs trained on Cohort B, tested on Cohort A................132

xi



www.manaraa.com

Table 4.41: Top 5 performing ensembles using the top 15 three-tuples from target and
novel responses combined using SVMs trained on Cohort B, tested on Cohort A.........132
Table 4.42: Top 5 performing ensembles using the top 15 three-tuples from target
responses using SVMs trained on Cohort A tested on Cohort B.....................................133
Table 4.43: Top 5 performing ensembles using the top 15 three-tuples from novel
responses using SVMs trained on Cohort A tested on Cohort B.....................................133
Table 4.44: Top 5 performing ensembles using the top 15 three-tuples from target and
novel responses combined using SVMs trained on Cohort A tested on Cohort B ......... 134

xii



www.manaraa.com

CHAPTER 1

INTRODUCTION

Primarily due to technological and medical advances over the course of the past century,

the life expectancy of the average American has seen a dramatic increase of 30 years,

from 47.3 to 77.8 years [1]. This increase in life expectancy, coupled with the fact that

the 78.2 million Americans of the baby boom generation are now moving into their 60's,

allows for a higher prevalence of predominantly elderly diseases such as Alzheimer's

disease (AD) and Parkinson's disease (PD). With 26 million cases of Alzheimer's

disease and 4 million cases of Parkinson's Disease worldwide, these diseases are

increasingly becoming a major public health concern [2,3].

1.1 ALZHEIMER'S DISEASE

Of the 26 million cases of AD worldwide, 5.1 million of those cases occur in the United

States. AD is predominantly an elderly disease, with only 200,000 of the over 5 million

cases occurring in patients younger than the age of 65. After 65, though, the chances of

developing AD rise at an alarming rate. While only 2 percent of the population over 65

has AD, that number doubles every five years thereafter, reaching 42 percent of the

population being afflicted with the disease after the age of 85. That number is also

predicted to grow to 60 percent of the population over 85 by the year 2050 as

Alzheimer's disease is estimated to affect somewhere in the range of 11 to 16 million

Americans [4]. As a result of this increased prevalence, Alzheimer's disease has become
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the seventh leading cause of death in the United States and fifth leading cause of death

for Americans over the age of 65, trailing only heart disease, cancer, cerebrovascular

disease, and respiratory disease [1]. With the growing population of people affected with

AD, comes an increasing economical impact of the disease. A 2005 study showed that

the total cost of dementia in the world was estimated to be $315.4 billion annually, with

$83.6 billion of that coming from North America at an average of over $24,000 per year

per patient. This figure includes direct costs from clinical testing and the care necessary

to maintain the health of the individuals [5]. In comparison, the total US government's

budget for the Department of Education in 2006 was only $56 billion [6].

The primary concern with Alzheimer's disease, and motivation for this work, is

the diagnostic process of the patients. There is very little evidence as to what exactly

causes the disease. Some links have been drawn to genetics, general health, and

nutritional care, however, there is no known specific cause of the disease [7]. There is

also no ideal pre-mortem method for a completely accurate, discemable diagnosis of the

disease. Alzheimer's disease is almost always diagnosed through clinical interviews and

neurological testing. This diagnosis includes interviews of not only the patient, but also

of caregivers of the patient and the family of the patient [8]. These interviews and

neurological exams, when conducted by an expert at a research or university hospital can

achieve a diagnostic accuracy of up to 90%, which is regarded as the practical 'gold

standard' for Alzheimer's disease diagnosis. A considerable problem is that many

patients do not have access to or cannot afford the expensive costs of these facilities.

Diagnosis is therefore made at local hospitals or community clinics or even by primary

care physicians where the overall diagnostic accuracy drops to 75% with a sensitivity of
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83% and specificity of 55% [9]. The true gold standard of diagnosis, which guarantees

an accurate diagnosis, is brain biopsy, where a small piece of the brain can be examined

under a microscope after drilling into the head. This process, however, is incredibly

invasive and therefore not a feasible option for diagnosis [10].

The clinical diagnosis typically consists of one or more standardized testing

procedures administered to the patient. The simplest and most frequently used of these

procedures is the Mini Mental State Exam (MMSE). During this examination the patient

is asked simple questions (such as the date, day of the week, present location) and asked

to perform simple cognitive and memory tasks (such as repeating back a series of items,

counting backwards from one hundred by seven, copying a diagram, or writing a

sentence). The tests are scored on a scale of 0 to 30, 30 indicating cognitively normal

and 0 being a near vegetative state. The test was developed in 1975 and while very

simple in design, it does provide an effective overview of the patient's cognitive ability,

verbal and written ability, and orientation. Other exams include the clock test, where the

patient is instructed to draw a clock at a given time, the Buschke Selective Reminding

Test, which measures the patient's short term verbal memory, the Wisconsin Card

Sorting Test, which measures pattern sorting ability, the Trail Making Test, where

psychomotor skills are analyzed, or a number of other testing procedures [10].

Apart from neurological testing, other methods such as blood, urine, or spinal

fluid tests or neuroimaging can be done. Rather than attempting diagnosis of

Alzheimer' s disease through these tests, the physician is attempting to eliminate other

potential afflictions such as stroke, brain hemorrhaging, or other forms of dementia such
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as vascular dementia, or whether the symptoms can be attributed to the natural course of

aging.

1.1.1 PATHOLOGY OF ALZHEIMER'S DISEASE

The human brain consists of about one hundred billion neurons. Connected in one

hundred trillion different pathways, these neurons allow for the every day function of the

brain including all cognitive and motor tasks [10]. When these neurons or the pathways

interconnecting the neurons become blocked or damaged, the effect is a reduction in

brain activity, such as the symptoms of Alzheimer's disease. The two classic hallmarks

of AD resulting in neuronal blockages, as first noted by Alois Alzheimer in 1906, are

commonly referred to as plaques and tangles.

The plaques consist of beta-amyloid (AP) proteins, which are broken down from

larger amyloid protein precursors (APP). The original APP molecules are thought to

have a role in nerve growth during development, while the beta-amyloid protein

fragments are typically eliminated in a healthy brain. The most common form of the

beta-amyloid protein consists of 40 amino acids, however, in Alzheimer's disease, an

abundance of longer proteins with 42 to 43 amino acids are produced. These larger

amyloid proteins are more prone to aggregate, and when they do, beta-amyloid plaques

are formed. The exact role of these insoluble plaques is unknown since there have been

cases of Alzheimer's disease reported where these plaques are not present. It is possible,

however, that these plaques, when allowed to accumulate, block the connections between

neurons eventually leading to neuronal death [11].
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Whereas the plaques form outside of the neurons, the tangles are found within the

structure of the neuron cell. In fact, the cause of the tangles is what gives the neurons

their structure originally. Another protein, called tau, is involved in the creation of

microtubules, which in part form the internal support and transfer system for the neuron.

In Alzheimer's disease, the tau protein is modified to a point where tau proteins begin to

pair together and become tangled within one another. The tangling results in a collapse

of the microtubules and eventually the inability to communicate to other neurons, also

leading to neuronal death. [12].

As these plaques and tangles develop throughout the brain, more and more

neurons are eliminated leading to overall atrophy of the brain itself. Figure 1.1 shows the

decline of an Alzheimer's disease patient's brain as the patient moves through the

different stages of the disease. There are four main stages of the disease: preclinical AD,

mild AD, moderate AD, and severe AD. While all patients may not progress through the

disease at the same rate, all patients will experience each of the different stages of the

disease. The most distinguishing feature of Alzheimer's disease is that unlike other

dementias and conditions with similar symptoms, AD is an incredibly slow, gradual onset

disease. Often, its onset is not even perceptible, and it may be years before an

identifiable change in the person has developed [10]. It is predicted that the plaques and

tangles begin to form one to two decades before any noticeable symptoms become

apparent in the patient [ 12]. The average life expectancy for a patient after being

diagnosed with AD is then only 8-10 years, although this varies from patient to patient

and is dependent upon such factors as the age at which the patient developed the disease

and the stage at which the disease was diagnosed [13].
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Figure 1.1]. Atrophy of a patient 's brain through preclinical, mild, and severe stages of

Alzheimer 's disease f12J.

The plaques and tangles first appear in the entorhinal cortex soon followed by the

hippocampus, both of which are interconnected. The hippocampus is responsible for

short term and long term memory formulation. When this area becomes adequately

degenerated, the first signs of AD become visible in a patient. The primary initial

symptom is memory loss. This symptom usually is not enough to give a full AD

diagnosis, but rather a diagnosis of mild cognitive impairment (MCI). From the

hippocampus, the disease then spreads to the temporal lobes of the brain as the patient

moves into a state of mild AD. Loss of judgment, reasoning, memory, and language as

well as confusion about location and small changes in a patient's ability to perform daily
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tasks can be seen at this stage. It is usually at this point that a patient or family of a

patient begins to seek medical diagnosis and the diagnosis moves from MCI into

Alzheimer's disease. As the patient moves into a moderate stage of AD, the plaques and

tangles have extended themselves into regions of the frontal and parietal regions of the

brain. Initial symptoms become worse as well as the addition of behavioral problems,

hallucinations and motor control issues. The final stage of Alzheimer's disease is severe

AD, where the plaques and tangles have spread throughout the entire brain and the

patient can no longer function at all by their own means. Weight loss, lack of bladder

and bowel control, and failure to even recognize family or loved ones accompanies the

final stage of the disease. The brain has also experienced extreme atrophy at this point

including shrinking of the cerebral cortex and extreme enlargement of the ventricles in

the brain [10,12]. These changes are not immediate and there is no sudden change from

stage to stage, but rather a gradual shift over a number of years.

1.2 OBJECTIVES OF THIS STUDY

The goal of this work was to create an automated, non-invasive, readily available for

clinical use tool for the early diagnosis of Alzheimer's disease. Two individual studies

were conductied, which involved the collection of event related potentials (ERPs),

obtained from the electroencephalogram (EEG) from cohorts of normal and Alzheimer's

disease patients. The signals were collected for each study in separate locations, using

different BEG hardware by different technicians. Both studies used the same oddball

paradigm protocol. Analysis of the signals was performed using wavelet analysis that

provided a set of wavelet coefficients. The coefficients from the different spectral bands

7
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of the EEG were used as features to train and test an ensemble of neural network

classifiers. A detailed analysis of electrodes, frequencies and stimuli was completed for

the entire data using two separate neural network architectures, multi layer perceptrons

(MLPs) and support vector machines (SVMs). A final analysis was completed to be

applied to the general Alzheimer's disease diagnosis problem based on the combined

results of both sets of data.

1.3 ORGANIZATION OF THIS THESIS

Chapter 2 provides a literature review on Alzheimer's disease diagnosis research

including biochemical analysis, neuroimaging, and electroencephalography. The

processes and methods used within this study are outlined in Chapter 3 including signal

acquisition, wavelet analysis for feature extraction, neural network architectures for

automated classification algorithms, and ensemble based data fusion. Chapter 4

discusses the precise implementations used and the accompanying results. Chapter 5

reviews the analysis and draws conclusions based on this study.

8
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CHAPTER 2

BACKGROUND

In addition to researchers attempting to identify the cause of AD or reliable treatments,

the diagnostic process has received considerable attention recently. Looking beyond

clinical interview, there are three main areas of research actively seeking a better means

of early diagnosis; biochemical analysis, neuroimaging, and physiological analysis.

2.1 BIOCHEMICAL ANALYSIS

The biochemical analysis for the early detection of Alzheimer's disease focuses primarily

on the cerebrospinal fluid (CSF), the fluid surrounding the brain and found in the

ventricles within the brain. The CSF is extracted through a procedure known as lumbar

puncture (or spinal tap), which involves puncturing the spine in the lumbar region of the

back. The procedure is highly invasive, painful, and expensive; however, the results

from such studies have been promising.

When extracting the CSF, three specific biomarkers are of interest, beta-amyloid 42

(responsible for plaques), tau protein, and phosphorylated tau (responsible for

neurofibrillary tangles). Concentrations of these proteins within the CSF have shown to

be somewhat reliable in the predictability that an MCI patient will develop Alzheimer's

disease with 95% sensitivity. Differentiation is also possible between Alzheimer's

disease patients and cognitively normal patients based on these concentrations [14]. The

strength of these biomarkers is increased even more when combined with metrics taken
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from neuroimaging techniques as shown in [15,16]. This process is far from becoming

standard diagnosis, however. When dealing with CSF, in addition to the invasiveness of

the process, there is significant variation in test results from site to site, which is a major

drawback of the technique [17].

2.2 NEUROIMAGING

In addition to, or more often in conjunction with, biochemical analysis, various forms of

neuroimaging can be used for diagnosis of AD. Virtually all forms of neuroimaging have

been applied to the diagnosis or monitoring of Alzheimer's disease in various research

applications. The most common forms of neuroimaging used today are MRI, PET, and

CT.

The different types of imaging monitor various aspects of the brain and therefore

different aspects of the disease progression within an Alzheimer's disease patient's brain.

Most common of all is the MRI and fMRI, which are used primarily to identify volume

loss and atrophy of the brain, specifically in the hippocampus region. The monitoring is

typically done over a longitudinal study, which allows the atrophy to become more

visible [18,19]. PET/SPECT scans monitor the glucose metabolism within the brain.

Again these are typically longitudinal studies showing a decrease in glucose metabolism

in relation to the loss of neurons within the brain [20]. The CT scan is used to monitor

blood flow within the brain, also showing the degradation of the brain. The CT scan has

also been used in differentiating between Alzheimer's disease and vascular dementia

[21 ]. Although these techniques do provide valuable information regarding brain

function over the course of the disease, their ability to serve as an early diagnostic tool is

10
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limited due to the high cost and specialists required to operate the imaging hardware

(such imaging hardware may not be available at community clinics), as well as the need

for continual follow up visits for the scans to deliver the most helpful diagnostic

information.

Fritzsche, et al., 2006, used a dataset of 68 subjects including 27 normal control

subjects, 16 MCI subjects and 25 AD subjects. They used MRI images from the subjects

and created six features from the images. Principal component analysis (PCA) was used

on sets of four features with classification done using a Fisher Linear Discriminant

(FLD). They also used neural networks to perform classification. Results provided 80%

classification of AD test patients and 85% of control subjects. Sensitivity between

controls and MCI subjects was 81% with a specificity of 80%. AD patients were

correctly classified 59% of the time when compared to MCI patients [22].

An early study incorporating another form of imaging using the low resolution

electromagnetic tomography (LORETA) technique of mapping EEG data to create a

three dimensional model of the brain showed some promising results in comparing

cognitively normal patients and Alzheimer's disease patients as well as distinguishing

between different stages of AD. The technique was able to localize some changes in

activity to the left temporo-parietal region of the brain, however, much more work is

necessary to create a feasible diagnostic tool using this method [23].

In addition to these well known imaging techniques, some newer techniques have

been developed over the last few years, which show some potential for the diagnosis of

AD. One relatively new technique being implemented is infrared and near infrared

spectroscopy (NIRS) for the potential early diagnosis of AD. These techniques use

11
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infrared light, which penetrates skin and bone tissue to gain a detailed view of the

intramolecular bonds and hemoglobin content inside the skull in a completely

noninvasive fashion. This technique is still new and much more research is necessary to

have any reliable results [24,25].

Another new technique emerging with potential for early diagnosis of

Alzheimer's disease is fluorescence anisotropy. This technique works on the biological

level through experimentation with the beta amyloid protein. Allsop, et al. used time-

resolved anisotropy measurements (TRAMS) to study the aggregation of the A( protein.

The experiments employ small quantities of fluorescently labeled Ap as well as unlabeled

proteins, which were combined with other chemicals and allowed to aggregate. The

technique was shown to be able to identify the AP aggregation well before it is apparent

using other common methods. Once fully developed, this technique could allow for a

high-throughput procedure for early detection of the A3 aggregates, which are a sign of

early AD [26].

Research within the realm of genomics is also gaining attention recently.

Marcotte, et al. have used cDNA microarray and proteomic approaches in their study of

the AD brain. From human hippocampal samples from human brains, specific neurons

have been identified for use in animal studies. Through the use of rats, they have been

able to develop a model of cognitive impairment. This model allows for characterization

between impaired and unimpaired subjects. Based on these classifications, they have

begun work examining cDNA profiles. By using what they learn from the animal

studies, they could potentially apply their findings to AD classification in humans [27].

12
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2.3 ELECTROENCEPHALOGRAM

Unlike biochemical analysis and neuroimaging, the electroencephalogram (EEG) offers a

method for diagnosis which is completely noninvasive and inexpensive by comparison.

It also is readily available at most community clinics or can be made available. The

origins of the technique date back as far as 1875 when Richard Caton recorded electrical

signals from dog and rabbit brains, however, it was not applied to humans until 1924 by

Hans Berger [28,29]. Since its discovery, the EEG has been used extensively in brain

research and disease diagnosis, particularly epilepsy, sleep related disorders, coma, and

dementia. The EEG quickly became the premier clinical tool used in research of the

human brain until the development of the aforementioned neuroimaging techniques [28].

The scalp EEG is collected through the use of scalp electrodes placed directly on

the head with reference electrodes applied to the ear lobes. These electrodes then

measure electrical activity typically in the range of microvolts ( V), commonly termed

brain waves, from the brain. The recordings show variation when recorded from

different areas of the head, which leads to multiple electrodes recording electrical activity

concurrently for a complete EEG recording. To ensure a common system of electrode

placement on the scalp, a standard method of placement was designed called the

International 10/20 System of electrode placement. The numbers in the electrode

locations refer to percentage intervals of placement based on the circumference of the

head. A measurement is taken from the top of the nose to the bone protrusion at the back

of the head, and then electrodes are placed in 20% intervals around the head with 10%

intervals added for additional electrode placement. A representation of the placement can

be seen in Figure 2.1. In the diagram, the electrodes are labeled by their position on the

13



www.manaraa.com

head in terms of the lobe of the brain they are placed over. The abbreviations are as

follows: F - frontal, C - central, P - parietal, T - temporal, O - occipital, and A-

auditory reference. The numbers describe the location of the electrode on that portion of

the head with the even numbers on the right side, odd numbers on the left, and z

electrodes on the centerline of the head [30]. The electrodes highlighted in black have

different names than the standard 10/20 system, however the locations are the same. All

highlighted electrodes (both black and grey) are the ones used within one or both studies

in this thesis.
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so much activity in the brain and a limited number of electrodes on the scalp with bone

and skin matter in between them and the brain. Information can typically be localized to

a region or hemisphere but not pinpointed exactly. In many seizure related studies,

subdural electrodes are placed directly on the brain. While giving an increased spatial

resolution, this is highly invasive as it requires cutting into the skull and also runs the risk

of infection and hemorrhaging [32]. A third type of electrode is the subdermal needle

electrode, which is inserted beneath the skin without penetrating the skull. These

electrodes require multiple pinpricks of the patient's scalp, are more costly than scalp

electrodes, and more suited for ER and ICU applications.

Artifacts can corrupt the EEG quite readily. Since the electrodes are placed

directly on the scalp and recordings are extremely low in amplitude, factors such as eye

or muscle movement, electrical noise, and even sweating can cause the recording to

become corrupted. These artifacts or the artifactual recordings must be removed prior to

any analysis of the data. This removal is usually done by either an EEG technician or in

many cases automatically by the data collection equipment.

2.3.1 SPECTRAL CONTENT OF THE EEG

The majority of the information collected through EEG recordings occurs below 50-60

Hz. This range is divided into five separate bands, typically referred to as rhythms,

which have been found to relate to different brain functions [28]. The EEG is subdivided

as follows:

15
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Delta rhythm ( < 4 Hz ) - The delta band of EEG activity represents the slowest but the

highest amplitude waveforms. These rhythms are most commonly found in deep sleep

and pertain mostly to unconscious processes within the mind. In a healthy individual, the

activity of the delta band is inversely related to the amount of attention and focus an

individual is currently using. When observed in awake adults, it is usually a sign of some

sort of cerebral damage or encephalopathy [28,33].

Theta rhythm (4-7 Hz ) - The theta band is the second slowest set of rhythms. These

rhythms are typically present during drowsy periods such as just before sleep or during

daydreaming or fantasizing. They are commonly seen in young children, however, their

presence in adults is usually indicative of stress or disease [2833].

Alpha rhythm ( 8-13 Hz ) - Alpha rhythms are the most common type of activity in a

healthy adult brain. Focused around the occipital and frontal regions, these waves are

known to be most prevalent in an awake, relaxed state in adults. From this state, a person

can easily shift into another state to perform a given task [28,33].

Beta rhythm (14-30 Hz ) - The beta range is large and consists of fast activity within the

EEG. The band is usually subdivided into two or three separate sub bands, which

represent different levels of activity. This rhythm is the most common waveform when a

person is awake with eyes open and engaged in some sort of activity such as listening,

thinking, or processing information [28,33].
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Gamma rhythm ( > 30 Hz ) - The highest frequency waves are the gamma rhythms,

which take place throughout all regions of the brain. These rhythms are thought to occur

when information processing in the brain requires information from multiple parts of the

brain all at the same time [28,33].

2.4 ACQUISITION PROTOCOLS AND EVENT RELATED POTENTIALS

Over the long course of EEG related research, protocols have been developed to extract

particular responses from the EEG. These protocols typically operate by presenting a

particular stimulus or sequence of stimuli to the patient, which then elicits a response in

the EEG. These stimuli can take one of four forms: auditory, visual, somatosensory, or

olfactory. The auditory stimuli are typically a series of different frequency tones or

sound clips. Video stimuli are typically conducted with patterns, colors, words, etc.

Somatosensory stimuli are common in studies on pain and generally performed by

directing an electrical current at some point on the body, for instance the wrist [34].

Olfactory stimuli involve presenting odors to the patient as opposed to sounds or visuals

[35]. The resulting response to the stimulus within the EEG is called an event related

potential (ERP) or evoked potential. Protocols are then created through arranging a series

of stimuli in a particular order to generate a response from the patient. There are many

different types of protocols from single stimulus protocols, go/no go experiments, oddball

paradigm, etc.

The protocol used in this study is a modified version of the auditory oddball

paradigm. In the standard oddball paradigm, there are two distinct stimuli, a standard

stimulus and a target or 'oddball' stimulus. The patient is presented the standard stimulus

17
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for a majority of the time. In the uncommon case where the target stimulus is presented,

a potential is generated within the EEG. The stimuli are usually presented in a random

order and with random interstimulus interval to further increase the novelty of the target

stimulus. In most cases, the patient is instructed to either push a button or count each

time they are presented with the target stimulus [36]. For the auditory oddball paradigm,

the two different stimuli are typically generic sine waves of easily distinguishable

frequencies.

The modifications to the oddball paradigm as used in this study came from

Yamaguchi, et al., 2000 [37]. In addition to the standard and target tones of the auditory

oddball paradigm, a third category was added consisting of novel environmental sounds,

such as a dog barking or bell ringing. These sounds were clips taken from Disney movies

and edited to a length of 200 ms. A total of 60 unique sounds were presented to each

subject. The exact breakdown of stimuli was 65% standard, 20% target, and 15% novel.

The subjects again were instructed only to respond to the target tones and were not

warned about the novel sounds at all. By using this third stimulus type, another form of

evoked potential generated by different regions of the brain can be collected, which may

be used to better differentiate between different types of dementia.

The data used in these studies are event related potentials. When a number of

these responses to similar stimuli are averaged together, a series of peaks and valleys are

generated. The number of individual stimuli necessary for the average has been found to

be a minimum of twenty [38], however, a larger number of responses (> 50) is desirable.

The need for averaging comes from the nature of the ERP response. The peaks and

valleys have such small amplitudes that they are buried within the noise floor of the BEG
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itself. By averaging, the features of the ERP become much more prominent. The

features of a typical oddball paradigm ERP can be seen in Figure 2.2.
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Figure 2.2: Sample ERP signal with components labeled.

The different peaks and valleys of the ERP can be described by the direction of

the peak and the latency of the maximum of the peak after the stimulus. The most

prominent features of the ERP are the P100 (Pl1), P200 (P2), P300 (P3), N100 (Ni), and

N200 (N2). While these may not happen at the exact latency in the name, there are given

ranges for each of the different peaks. For example, the P2 occurs from 150-270 ms post-

stimulus [37]. The most critical and presumably informative of all these peaks is the

P300.

The P300 or P3 is the largest of all the peaks in terms of amplitude, measured at

the maximum of the peak occurring around 250-500 ms. First noted in 1965, the P300
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has been shown to relate to cognitive ability by numerous studies. It is primarily present

in responses to the oddball stimuli in the two-stimulus oddball paradigm and both the

oddball and novel responses in the three-stimulus oddball paradigm. The P300s are

different in response to the two different stimuli, however, and as such have been given

separate names of P3a for novel responses and P3b for target responses. The naming

scheme comes from the novel P300 occurring with a lower latency and therefore

occurring earlier than the target P300 [39].

The inherent difficulty of using the ERP as a diagnostic tool comes when

evaluating a patient's ERP individually. There are known to be distinguishing features

when comparing a cohort of AD patients to a cohort of normal patients, however, those

features may not be easily differentiated when looking at single patient ERPs. In

addition, the P300 is not necessarily prominent in all normal subjects and it may be

prominent in some AD patients, which is shown in Figure 2.3. Due to these

inconsistencies, further examination is necessary beyond visual analysis.
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Figure 2.3. Comparison of ERPs of normal and AD subjects. Top left shows an expected
P300 fas theirom a normal subject. Top right shows an unexped from the temporal-parietal junction,

Bottom left shows an expected lack of P30 from an AD patient. Bottom right shows an
unexpected P300 from an AD patient.

although the possibility of multiple sources was also accepted theoretically [39]. In 1997,

a direct comparison between two stimulus oddball paradigm and a single stimulus

protocol were compared with the only difference in the results being that the oddball
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P300 produced a slightly larger P300 while all other aspects were statistically the same.

This showed that either type of active protocol, where the patient is required to respond to

a stimulus, elicit the same sort of response most likely from the same portion of the brain

[36].

In 1999, a study comparing visual and auditory stimuli from both active and

passive protocols was performed. Results showed that the active protocols yielded larger

P300's having longer latencies. The auditory stimuli also yielded larger P300

components than the visual stimuli [40]. A 2002 study again compared oddball paradigm

to a single stimulus paradigm using visual stimuli, with the primary focus on

interstimulus interval (ISI). The study again showed that the oddball P300 produced a

larger P300 amplitude than the single stimulus paradigm at short ISI of 2.5 seconds, but

when the ISI was extended to 30 seconds, the ERPs became a lot more similar with the

major difference being the duration of the P300 is longer in the oddball response [41].

It is now believed that the P300 is composed from components from different

areas of the brain simultaneously, however, the exact contributing factors are unknown.

It has also been shown that the P300 varies in relation to the difficulty of the task and

attention required to accurately distinguish between standard, target, and novel stimuli.

In addition, the P3a and P3b have been shown to originate from similar areas with some

variation in the generation, which is thought to be indicative of the neurophysiology of

memory storage. Due to the variation, the two different P300 responses are considered to

carry different information from one another. The P3a has also been shown to be found

in only 20% of cognitively normal patients [42].
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2.5.1 WAVELET P300 ANALYSIS

The EEG is decomposed into frequency sub bands, which are analyzed during EEG

analysis. The frequency content of ERPs is commonly analyzed according to these sub

bands. After averaging the ERP signals together to generate the visible peaks and

valleys, the resulting signal is quite short in length (around 1 second). In this averaged

signal, the latencies are just as critical as the amplitudes to the informational value of the

signal, therefore a time-frequency representation is necessary for analysis. The most

widely used method is the wavelet transform, which allows for a frequency analysis of

the signal while keeping the transformed signal time dependent.

A 2007 study by van Vugt, et al. gave a comparison between three different

spectral analysis techniques, wavelets, multitapers, and Pepisode- Conclusions showed that

the Pepisode was most useful for longer signals with multiple cycles of information while

multitapers are most helpful at localizing higher frequencies in the signal. Wavelets were

most helpful for lower frequencies and can trade offbetween frequency and time

localization based on the type and length of wavelet [43]. Since this study deals with

ERPs, which are short, non-periodic signals with emphasis of interest on low frequency

bands, the wavelet appears to be the best suited method.

Bazar-Eroglu, et al. 2001, compared three different paradigms of stimulus

presentation: oddball paradigm, single stimulus with variable ISI, and single stimulus

with constant ISI with every fourth stimulus removed. Using wavelets, the signals were

then decomposed and viewed topographically to visualize the distribution of the P300

throughout the head. While the differences in frequency bands between paradigms is not
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of all that much interest, the oddball paradigm P300 was visible in all recording sites and

accompanied by delta peaks around 2 Hz [44].

Demiralp et al., 1999a, used the oddball paradigm to generate ERPs from

subjects. They then applied wavelets to the signals in the form of the quadratic B-spline

wavelet to acquire a time-frequency representation of the signal. The goal was to show

differences in cognitive processing between the different stimuli responses. Ultimately,

differences were shown in the theta, alpha, and specifically delta frequency bands. The

N1 and P2 components showed little to no difference between the stimuli responses at

any frequency, while the N2 showed larger amplitudes in the time domain and higher

latency in the delta frequency range for target responses versus non-target. Overall, they

observed significant benefits from the decomposition helping to separate simultaneous

events related to cognitive information processing, which are not possible in the time

domain alone [45].

In a companion study, Demiralp et al. 1999b, also applied the use ofwavelets to

single trials from the oddball paradigm. In this study they used a 5 octave quadratic B-

spline wavelet on each stimulus response. They detected that the 4 th delta coefficient was

the main feature indicating a P300 response. They then used this as a criterion for

selecting which responses to average together. After averaging, they were able to

compare the target responses using the enhanced P300s from the criterion rejection

method and the remaining P300s that were not included in the averaging. As expected,

the target responses yielded larger P300s with significantly different latencies [46].

Ba~ar, et al., 2001, applied wavelets to BEG oddball paradigm signals and

compared them with digital filtering methods. The focus of the spectral analysis is from
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the delta to gamma bands. The wavelets were shown to extra delta band information and

check the occurrence of alpha band information not visible through a Fourier transform.

They summarized the advantages of using wavelets over standard filtering techniques

into three categories: time localization of frequency components, no need for a fixed time

window, and significant data reduction and compression [47].

Demiralp, et al., 2001 a, again used a five octave wavelet for analysis of the P300

for both averaged and single trial ERPs. Essential results of this study involved the

ability to compare P300s from different groups of subjects with different cognitive

behavior, ages, or pathologies. It also provided more confirmation that the key

distinguishing characteristics of the P300 lie in the delta band after wavelet

decomposition [48].

Demiralp, et al., 2001b, examined the differences between P3a and P3b under a

variety of different difficulty visual stimuli. The difficulty was based on how easily

distinguishable the target and novel stimuli were from the standard. Like in other studies,

when the difference was easily detectable, the target P300 had a higher amplitude at all

electrode sites. When the difference became smaller, the novel P300 became more

pronounced. Through the use of wavelets, it was also determined that theta activity

increased in the P3a as the difficulty increased and the delta coefficients were affected in

the P3b [49].

2.6 ERPS IN ALZHEIMER'S DISEASE RESEARCH

The ERR has been used extensively in AD research over the past few decades. To list

every study involving the use of EEG and AD would extend well beyond this thesis, so
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only some basic points will covered. For a more complete overview of the EEG in AD,

there are two overview papers exploring the subject by Hillert, Jeong and Olichney,

[50,51].

A majority of the studies involve the amplitude and latency of the ERP

components, in particular the P300. It has been shown that there is an overall linear

slowing of the ERP in relation to age in cognitively normal patients, found to be 1-2 ms

in latency per year [52,53]. In almost all studies, the P300 in Alzheimer's disease

patients has been shown to have a longer latency than normal subjects, however, this is

not unique to AD since conditions such as vascular dementia and schizophrenia exhibit

similar symptoms [54,55,56,57]. This trend is also only evident when comparing cohorts

of patients. On a patient to patient basis, the difference is usually not statistically

significant. In addition to the latency, an amplitude decrease has been in debate for a

number of years. Studies from Polich, et al in 1989 showed a definitive decrease in

amplitude of the P300, however, a 2000 study by Golob and Starr showed there is little

statistical significance of the amplitude [58,59]

Coherence analysis has also been insightful in the determination of ERP

differences between AD and normal patients. A study of 14 AD patients and 10 normal

patients showed an increase in the alpha 2 sub band of the ERP in AD patients and a

decrease in control subjects after task completion as compared to the EEG before the

task. Even larger differences were found in the alpha 1 sub band where there was a

marked increase in control subjects and no change in AD patients [60].

Most of the aforementioned studies were carried out using auditory stimuli in the

oddball paradigm, which represents the predominant testing method in ERP studies.
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Visual stimuli have also been used quite extensively. Like the auditory stimuli,

amplitude reduction in the P300 has been noted in visual stimuli studies [61]. While

there have been some similarities between results from visual and auditory stimuli, the

results are not exactly identical. There were similar yet differentiable features in the

visual and audio ERPs, which suggests slight differences in the way the brain processes

the two different stimuli. In addition to the differences between stimuli, relations were

also made to the testing procedures showing auditory stimuli correlate better with the

MMSE while visual stimuli correlate better with the Raven's Coloured Progressive

Matrices test [62].

A major swing in research now is in the direction of neuroimaging, particularly in

conjunction with EEG and ERP. It has been shown that diagnosis performance is

increased when combining the outcomes of EEG and MRI tests than either testing

procedure can perform on its own. This increase is due to the tests monitoring different

aspects of cognition and therefore complementing the information contained in one

another [63]. Additionally, correlations have been found between the severity of

dementia and the metabolism of glucose through the combination of EEG and PET scans.

Szelies, et al. showed that the latency, but not amplitude, of the P300 in EEG correlates

to the glucose metabolism during a PET scan in Alzheimer's disease patients [64].

Another area receiving much research attention presently is familial AD (FAD).

Although only a small percentage of AD cases are linked to genetics, they do encompass

the majority of early onset AD (prior to 65 years of age). A 1995 study revealed links to

the P50, NiOG and P300 showing potential risk to acquire AD in subjects with a first-

degree relative afflicted with the disease [65]. Another study from 2006 recorded ERPs
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from Alzheimer's disease patients and their children to examine any potential evidence

for development of the disease in the children. This particular study not only replicated

results showing that AD patients have longer latencies in their P300 components, but

more significantly that their adult children also showed a slowed P300 as well as smaller

amplitude P300. They also reference other studies in which no such correlations are

found and relate the differences to experimental methods [66].

2.7 ALZHEIMER'S DISEASE CLASSIFICATION

With some knowledge of what features are capable of distinguishing an Alzheimer's

disease patient from a cognitively normal subject, classification can be done, eventually

leading to an automatic diagnosis method.

Polikar, et al., 1997, proposed an approach of using multilayer perceptron neural

networks as a means of diagnosing AD through the use of ERPs. A 28 patient cohort, 14

AD, and 14 controls was analyzed. A two stimulus oddball paradigm was used with 86%

1 kHz standard tones and 14% 2 kHz target tones. Training and testing cohorts each

consisted of 14 subjects, 7 AD and 7 normal for each. The raw time domain signals were

the original input data for the neural network. Wavelets were then used to extract

features from the ERPs to be used as the input into an additional neural network.

Classification performance on the raw data was only 50-64%, while the DWT

coefficients provided 79% performance. Through additional training methods,

performance was increased to 93%. While this experiment demonstrated that a neural

network based approach to the diagnosis of AD is possible, a larger cohort would be

necessary to validate the procedure [67].
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Petrosian, et al., 1999, used a cohort of 3 probable AD subjects and 3 age

matched controls. A recurrent neural network (RNN) was used. Nine channels of the

EEG were recorded and the resulting signal was divided into 2 minute segments, which

were used as inputs to the neural network. The RNN used an Extended Kalman Filter

based algorithm that adapts the network weights on an instance by instance basis. In

addition to the raw data, wavelets were used to decompose the data to provide additional

training features with the Daubechies 4 (db4) wavelet. The network was trained on 1 AD

patient and 1 normal subject and tested on the remaining four. Although the sample size

was quite small, the performance was consistent throughout all testing [68].

Petrosian, et al., 2001, expanded their cohort to include 10 AD patients and 10

controls. Again a nine channel EEG was taken from this patient, this time while the

subject was at rest with no acquisition protocol. The db4 wavelet was used once again to

extract input features for the RNN. For the training, 3 AD patients and 3 normal controls

were used and the remaining 14 subjects were used for testing. The network was able to

classify all of the remaining subjects correctly (7 of 7) and 5 of the 7 remaining AD

patients [69].

Park, et al., 2001, used a cohort of 25 mild AD, 12 severe AD, 17 age matched

normal controls, and 7 young controls in P300 analysis of the EEG. A two stimulus

oddball paradigm was used with 75% 1 kHz standard tones and 25% 1.5 kHz target

tones. Five electrodes were used from the 10/20 International system. Rather than

pressing a button for the stimuli, the subjects were asked to count the number of times the

target stimuli was presented. There was a large gap in counting accuracy between the

controls and the AD patients: age matched control (8 8%), young control (100%), mild
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AD (20%) and severe AD (0%). Analysis of the ERP signals was done using the N200

peak as well as the P3a and P3b. Results showed that the P3 component in the mild AD

patients had a higher latency and the severe AD patients high still, while the amplitude

showed no significant differences between the groups [70].

Yagneswaran, et al., 2002, used a cohort of 9 probable AD patients and 10

controls. From these patients, 37 recordings were used: 18 from AD patients and 20 from

controls. A total of nine electrode positions were recorded for each subject. Diagnosis

was done by looking at power frequency and wavelet coefficients of the recordings. The

overall power frequencies of the signals yielded no distinguishing differences between

the two groups, so bandpass FIR filters were used with a Hamming window to split the

signals into four subbands: delta, theta, alpha, and beta. These subbands along with

relative power of the signals and slower wave ratio were used as the inputs into a neural

network. They also used the averages of wavelet coefficients extracted using the

Daubechies 5 wavelet as features for an additional neural network. The classifier used

was learning vector quantization. The resulting classification on the test data provided

94.7% (18 of 19) classification accuracy using the power spectra features and 89.4% (17

of 19) classification accuracy using the wavelet coefficients [71].

De Thad, 2002, looked at the physiological markers of AD by using a resonant

recognition model (RRM) to analyze the amyloid plaques, precursor proteins (APP) and

amino acids found in the creation of these proteins. The RRM is a physico-mathematical

model used for analysis in the interactions of protein and its target using digital signal

processing methods. The RRM determines common frequency components in the spectra

of proteins, which then allows for identification of particular biological functions or
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interactions. A variety of wavelets were used for frequency analysis (including Morlet,

Coiflets, Daubechies, Symlets, and Meyer). Results showed that the resulting energies

from the wavelet decomposition were highly wavelet dependent and a specific wavelet

for this task would possibly yield better results [72].

Cho, et al., 2003, used a cohort of 16 probable AD patients and 16 age matched

controls. Their method used a two stimulus oddball paradigm with 75% 1 kHz standard

sounds and 25% 1.5 kHz target tones. Only a single electrode at location P4 was used for

recording. The patients were asked to count the number of times the target tone was

presented. The EEG data was divided into 30 second segments and then analyzed to

compute 118 features with the following breakdown: 88 power spectral measurements,

28 statistic measurements, 2 chaotic features, and 10 ERP features. Through the use of

genetic algorithms, a 35 feature long "chromosome" was created and optimized to

include a minimal amount of the most dominant features for use in training a neural

network. The final selection of features included 24 spectral features, 8 statistical

features, 1 chaotic feature, and 2 ERP features. From the original segmentation, 137

segments from 11 AD patients and 10 normal subjects were used for network training

while 72 segments from the remaining 5 AD patients and 6 normal subjects were used for

testing. The resulting classification accuracy of the neural network was 73% for AD,

88% for normal with a total classification performance of 81.9% [73].

Abasolo, et al., 2003, used a cohort of 7 AD patients and 7 normal controls. Five

minutes of data was recorded using the BEG, which was then broken down into 5 second

segments. Analysis was done using the P3 electrode by suggestion of an

electroencephalographer. For the analysis, approximate entropy (ApEn) was used, which
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quantifies regularity in sequences and time series data by assigning a non-negative

number to sequences with more instances of recognizable features or patterns. Results

showed that the ApEn values of normal subjects were higher than those of AD patients.

This experimentation provides a potential application of ApEn to the diagnosis of AD

through the use of the EEG [74].

Abasolo, et al., 2006, continued their 2003 study by expanding their cohort to 11

AD patients and 11 normal controls, as well as adding auto mutual information (AMI)

analysis. The AMI provides a measure of both linear and non-linear statistical

dependencies between two time series. Their analysis also expanded to include 19

electrode locations. They used this method by looking at the AMI between a given point

in the data and a given amount of time later in the data. The results showed that the

ApEn values increased in the temporal electrodes and occipital electrodes with the frontal

electrodes providing the lowest ApEn values. For the AMI, the rate of decrease was also

higher in those regions, which agrees with the higher complexity in the time series as

shown by the ApEn. Like the first study, the ApEn was lower in AD patients than

control subjects as well as slower AMI decreases in the AD patients [75].

Tao and Tian, 2005, used a cohort of 12 probable AD patients, and 18

MCI patients for a coherence analysis of gamma-band EEG. The EEGs were taken

during rest using a protocol of presenting the subject with a random series of odd and

even numbers less than 30. The subjects were instructed to count the number of odd

mumbers only. Each recording was performed at 21 different electrode sites. A Mexican

hat wavelet was used to extract the gamma band information from the EEGs. Coherence

analysis was then done between pairs of electrodes. Results showed a reduction in
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coherence in both rest state and during cognitive task. In the MCI patients, there was a

significant difference between rest state and cognitive state. This difference showed that

the coherence during cognitive processing could be a helpful measure in AD diagnosis

[761.

Chapman, et al., 2007, used a discriminant function as their method of

classification between early stage AD and normal controls. The cohort included a total of

12 AD patients and 12 normal controls. For the ERP extraction, a number-letter

paradigm was used, which is a visual stimuli task using ordering as the active component

of the task. Principal component analysis (PCA) was then used to extract eight features

from the ERP used in their discriminant analysis. Two different methods of validation

were used: a 50/50 split of the data and leave one out cross validation. Performance was

high for the 50/50 split with 92% classification accuracy, sensitivity of 100%, and

specificity of 83%. For the leave one out cross validation, classification dropped to 79%,

sensitivity of 83%, and specificity of 75% [77].

Gomez, et al., 2006, used a cohort of 12 probable AD patients and 12 normal

controls. They used the magnetoencephalogram (MEG), which measures the magnetic

fields produced by the electrical activity of the brain, using a full 148-channel whole head

magnetometer. Again, the AMI was calculated to locate time series dependencies. The

AMI of the MEG decreased at a lower rate in AD patients in all channels compared to the

control subjects [78].

Henderson, et al., 2006, used two different approaches for classification. With

their cohort of 39 AD patients, six vascular dementia patients, and 42 cognitively normal

patients, they used both a fractal-dimension based method and a method based on a
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probability density function based on zero-crossing intervals for classification. The

analysis was done on the EEG itself rather than the ERPs. Promising results showed a

specificity of 99.9% and sensitivity of 67% for the fractal-dimension method and 99.9%

specificity and 78.8% sensitivity for the probability density function method [79].
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CHAPTER 3

METHODS

3.1 PREVIOUS RESEARCH TN THIS STUDY

The previous work on this project included a single cohort of Alzheimer's disease

patients and normal control subjects. The finalized cohort totaled 71 patients. The

process involved conducting a discrete wavelet transform on the ERPs of each patient

and then using the coefficients from the transform as inputs into a classification

algorithm. The classification algorithm then provided a diagnosis for the signal being

analyzed based on those features.

The initial research stage of the project, as conducted by Genevieve Jacques,

included only 32 subjects. The primary objective was to test the effectiveness of an

automated classification system based on wavelet features to distinguish between

Alzheimer's disease and normal subjects. This stage of the project focused on wavelet

selection, specifically the Daubechies wavelet (db4) and quadratic B-spline wavelets.

Analysis was also only carried out on the Pz electrode. Overall performance from the

different wavelets was in the low to mid 80% range [80].

The project was continued by Apostolos Topalis, who expanded the analysis to

include the Cz and Fz electrode responses commonly used in ERP analysis. A Learn++

algorithm was used to create ensembles for classification using Daubechies wavelet

coefficients as inputs, eliminating the B-splines. Single trial performance reached 83.1%
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with a 5-trial average of 79.2%. The cohort had also been expanded to include all 71

patients [81].

Nicholas Stepenosky further expanded the scope of analysis. Again, the full

cohort of 71 patients was used with a subset of 66 patients also analyzed due to

troublesome patients. This part of the study began preliminary investigation over all 19

electrode responses, as in Figure 2.1, with a focus on those electrodes from the parietal

region. Feature sets were again obtained using the Daubechies wavelet, with 4 vanishing

moments, and only the lowest three frequency bands were analyzed, 1-2 Hz, 2-4 Hz, and

4-8 Hz. Again ensemble techniques were employed, this time using decision level fusion

using combination rules such as sum rule, product rule, weighted majority voting, and

decision templates. Performance reached as high as 84.85% for the 66 patient cohort and

83.1% for the 71 patient cohort [82].

Hardik Gandhi then used a stacked generalization method as his classification

algorithm. Again, all 71 patients were used with early analysis using the Fz, Pz, and Cz

electrodes, and then expanding to include a second set of electrodes from this work.

Ghandi also subdivided the Alzheimer's disease cohort into two separate cohorts, mild

and mild-moderate AD, and then conducted a three class classification analysis. For the

two class problem, the best performance achieved was 85.65%, while 71.34% was the

best classification performance for the three class problem [83].

3.2 CURRENT RESEARCH

This stage of the research includes a continuation of the work done by Stepenosky. The

full cohort of 71 patients including all electrode locations were analyzed. First, the
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individual electrode responses for each of the three lowest frequency bands were

analyzed individually. Based on this analysis, the most informative features were

selected for ensemble construction using decision level fusion using sum rule, product

rule, weighted majority voting, and Dempster Shafer rule. An exhaustive search through

all possible combinations of classifiers also provided the most ideal ensembles and gave

insight as to which electrode responses provided the most complementary information

when selecting a final set of electrode responses to use for diagnosis.

Additionally for the current work, a second cohort from a new study has been

added including Alzheimer's disease patients, Parkinson's patients, MCI patients,

Parkinson's disease with dementia patients, and cognitively normal controls. Aside from

distinguishing between Alzheimer's disease and normal subjects, the new classes will

eventually be used for diagnosis between all classes as well as testing the sensitivity of

the algorithm for future prediction of dementia development in individual subjects. A

flowchart showing the overview of the process is shown in Figure 3.1. The two cohorts

will be referred to as Cohort A for the original 71 AD and normal subjects and Cohort B

for the cohort from the new study including 62 AD and normal subjects for the remainder

of this thesis.
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Figure 3.1: Flowchart showing the overview of the approach.

3.3 RESEARCH SUBJECTS

The data used for this work has been received as a collaboration among three institutions.

The subjects from Cohort A were first given a neuropsychological examination at the

University of Pennsylvania where an initial diagnosis is made by an expert neurologist.

This diagnosis is considered the gold standard for our research. The patients were then

sent to Drexel University, where their EEGs were collected, cleaned of artifacts, and

averaged together to provide ERP signals. The resulting ERP signals were then

transferred to us at Dr. Polikar's Signal Processing and Pattern Recognition Laboratory

(SPPRL) at Rowan University where the data analysis and automated classification is

performed.

The subjects from Cohort B were again given a neurological examination and

diagnosis at the University of Pennsylvania. The EEGs were then also acquired at the

University of Pennsylvania and the raw EEG data was sent to us at SPPRL at Rowan

University. Because there is no intermediary processing at Drexel University, artifact
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removal and averaging of the signals was done at SPPRL. The motivation for this is to

keep as much of the process as automated as possible to ensure minimal expertise

required for implementation on a large scale at community clinics, the only processing

necessary for the patients is collection of raw EEG signals.

For Cohort A, a total of 71 subjects provided sufficient usable data. Of these 71

subjects, 34 were diagnosed with Alzheimer's disease and 37 were cognitively normal.

For Cohort B, a total of 62 subjects were collected in the study up to this point. The

breakdown of diagnoses is 31 AD, 31 normal. All patients in both cohorts were verified

to be free of any evidence of other neurological disorders by history or by exam.

During the neurological assessment of the subjects, the Mini-mental State Exam

(MMSE) was administered. As mentioned previously, the MMSE tests for memory,

language, and praxis skills and is one of the commonly used diagnostic tests for

dementia. The test is scored from 0 to 30 with 30 being cognitively normal. Any score

lower than 19 indicates obvious impairment. Patients were also tested on the Clinical

Dementia Rating (CDR) Scale, which is scored as 0, .5, 1, 2, or 3 depending on the

severity of the dementia, with 3 being severely impaired and 0 being cognitively normal.

Both of these tests are part of the NINCDS-ADRDA (National Institute of Neurological

and Communicative Disorders and Stroke- Alzheimer's Disease and Related Disorders

Association) criteria for probable AD [84]. For Cohort A, only the AD subjects with the

highest MMSE scores were selected, since the motivation of the project was to be able to

diagnose AD in its earliest stages. For Cohort B, patients were not excluded based on

MMSE scores alone, but rather their ability (or inability) to successfully complete the

data acquisition protocol.
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For Cohort A, the following inclusion and exclusion criteria were used:

Inclusion criteria for cognitively normal cohort: (i) age > 60; (ii) Clinical

Dementia Rating score = 0; (iii) Mini-mental State Exam Score > 26; (iv) no indication of

functional or cognitive decline during the two years prior to enrollment based on a

detailed interview with the subject's knowledgeable informant.

Exclusion criteria for cognitively normal cohort: (i) evidence of any central

nervous system neurological disease (e.g. stroke, multiple sclerosis, Parkinson's disease,

etc.) by history or exam; (ii) use of sedative, anxiolytic or anti-depressant medications

within 48 hours of ERP acquisition.

Inclusion criteria for AD cohort: (i) age > 60; (ii) Clinical Dementia Rating score

>.5; (iii) Mini-mental State Exam score < 26; (iv) presence of functional and cognitive

decline over the previous 12 months based on a detailed interview with a knowledgeable

informant; (v) satisfies the NINCDS-ADRDA criteria for probable AD.

Exclusion criteria for AD cohort: Same as those for the cognitively normal

controls.

The criteria were modified slightly for Cohort B. There was no restriction on the

MMSE score and Parkinson's disease served as its own category, rather than an exclusion

condition. Table 3.1 summarizes the demographics from each of the cohorts.
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Table 3.1.: Cohort details including the number ofpatients, average ages and standard
deviations, and average MMSE scores and standard deviations.

Cohort A (71 Subjects)

Number of Average Standard Average Standard
Subjects Age Deviation MMSE Deviation

Score

AD 34 74.97 7.09 24.68 2.95
Normal 37 76.14 7.28 29.24 1.19

Cohort B (62 Subjects)
AD 31 76.36 8.23 19.29 5.85
Normal 31 70.44 7.99 28.59 1.82

3.4 DATA ACQUISITION

Data for this project came in the form of ERP signals acquired through an auditory

oddball paradigm. Aside from the artifact removal, each cohort followed the same data

acquisition procedure, which is a slightly modified version of the protocol described in

[37]. Subjects were equipped with a set of headphones while seated. Before beginning

the protocol a hearing threshold was set unique to each patient by presenting them with a

1000 Hz tone and adjusting the volume appropriately to a comfortable level for the

subject.

The subject was then presented with a series of tones to acquaint them with the

protocol. The tones were 100 ms each including a standard 1 kHz tone, target (oddball) 2

kHz tone, and novel sounds, which included 60 unique environmental sounds digitally

recorded and edited to 200 ms duration. Once the subject understood the process, the

actual data acquisition began.

A total of approximately 1000 stimuli were presented to the subject in a pseudo-

random order. The frequency of the different tones was 65% standard, 20% target, and

15% novel. The inter-stimulus interval was varied from 1.0-1.3 seconds. The patient

was instructed to press a button each time they heard only the target tone. Approximately
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20 minutes of total EEG was recorded in intervals of 3-5 minutes with 3 minutes of rest

in between each set. The entire process lasted roughly half an hour.

The EEG signals were recorded from 19 tin electrodes either embedded in an

elastic cap for Cohort A, or applied directly to the patients' scalp for Cohort B. The

impedances on the electrodes were limited to 20 k. Signals were amplified and

digitized at 256 Hz/channel and stored. All signals were notch filtered at 59-61 Hz to

remove electrical noise and baselined with respect to the pre-stimulus interval.

For Cohort A, the technician at Drexel University removed all artifactual

recordings from the EEG before averaging the signal. The averaged signal was then

calculated based on the stimulus so that there were 3 different mean EEG recordings from

each patient. In cases where a large number of stimuli were artifact free, multiple

averages were created with 30-85 recordings per average. Averaging was done starting at

200 ms pre-stimulus and ending 800 ms post-stimulus.

For Cohort B, an automated derivative-based artifact removal technique was

devised. Each of the raw signals was split into 3 signals based on stimulus. A 2 0 th order

derivative was then taken for each point in the signal. A threshold was set to mark any

change greater than the threshold as being an artifact, and subsequently removing that

recording from the signal. The remaining artifact free signals were then averaged

together in the same manner as Cohort A yielding three averaged ERPs, one for each

stimuli. An example of the artifact removal is shown in Figure 3.2.. This artifact

removal technique is shown by Equation (3.1), which is applied to the entire signal;

however, the full recordings are removed, not just the points exceeding the threshold.

F f(x), where f(x ± 20)- f(x) < threshold
f (x) =1(3.1)

Lremove, where f (x + 20) - f (x) threshold
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Figure 3.2: Example of artifact removal. The vertical lines break up by signal into 1
second intervals for each stimulus. Any recording exceeding a set threshold results in

removal of that entire interval. The top plot shows the signal with artifacts. The bottom
plot shows the location of artifacts as identified by the derivative. These recordings were

removed..

To view the differences of the signals between the two cohorts, grand averages

were created for each cohort. The grand average is an average from every patient in the

cohort on each of the electrodes. Figure 3.3 shows a comparison of the Pz electrode from

both Cohort A and Cohort B on both novel and target stimuli responses. The overall look

of the two different cohorts shows some strong similarities in the shape of the P300 and

the differences between normal subjects and AD patients. There are also some minor

differences such as the amount of noise present in the averages. For a full comparison,
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grand averages from every electrode are shown in Appendix A for Cohort A and

Appendix B for Cohort B.

x 10
°
E Target PZ

4

2- j

-02 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08
Time (s) AD

x 10a Novel PZ Normal

E

-2 -

-4

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.

Time (s)

Target PZ

6

{-2

4

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8Time (s)

Target PZNormal

-2

0.2 01 0 0.1 0.2 0.3 04 0.5 06 0.7 08

Time (s)

averages from each cohort on the Pz electrode.

-4

44



www.manaraa.com

3.5 FEATURE EXTRACTION

The EEG, even as an averaged ERP, contains a significant amount information in its

original time-dependent form. It can be hard to tell exactly what is useful in the signal as

well as how much of the information is redundant or noninformative in the classification

process. Based on this, the frequency domain representation of the signal can be quite

helpful in extracting discriminating information from the ERP. The frequency domain

representation allows for a visualization of the frequency content of the signal, which as

described throughout this thesis, is of utmost relevance to EEG signals.

The most extensively used method of creating a frequency domain representation

of a signal is through the use of the Fourier transform (FT). The Fourier transform works

by decomposing the signal into complex exponential functions at different frequencies,

which can then be integrated over an infinite interval to give the frequency representation

of the signal. The equations for the FT and inverse FT are shown in equations (3.2) and

(3.3), where x(t) is the time representation of the signal and X() is the frequency

representation of the signal. The inherent problem with the FT is that when the signal is

transformed from time domain to frequency domain, all temporal information is

completely lost in the magnitude spectrum. The time information does still remain in the

phase response of the FT, however, it does not lend itself in a practical form to use in a

time-frequency analysis. This lack of temporal information poses a significant problem

when dealing with nonstationary ERPs since the latencies of the ERP component play a

significant role in the analysis. Therefore, the FT is insufficient for feature extraction and

a time-frequency analysis method is required.

X(f) J !x(t)e- 2"Jdt (3.2)
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x(t) = X(f)e2dt (3.3)

The short time Fourier transform (STFT) attempts to overcome the temporal

limitations of the FT through use of windowing. By shifting a window through the signal

and multiplying only the section of the signal in the window by the exponential function,

a piecewise time-frequency representation can be generated. By adjusting the width of

the window, a tradeoff is created between the amount of resolution in the time and

frequency domains. This tradeoff is in effect the Heisenberg Uncertainty Principle

stating that in a time-frequency representation of a signal, the exact time and frequency

cannot be known simultaneously. The equation for the STFT is shown in equation (3.4)

where x(t) is again the original time signal and w(t-r) is the windowing function shifted

by a time r. A narrow window allows for excellent time resolution, but fairly poor

frequency resolution, whereas a wide window allows for excellent frequency resolution

but poor time resolution. This effect poses a problem in a very nonstationary signal such

as the EEG, since the size of the window remains constant for all calculations of a given

STFT [85]. This drawback leads to the need for a different time-frequency analysis tool,

the wavelet.

STFTO') (z, f) = x(t)w(t- r)e-'2xtdt (3.4)
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3.6 WAVELET TRANSFORMS

The wavelet transform (WT) was first developed in the 1980's by Grossmann and

Morlet to analyze geological data, and in over two decades since its development, it has

been researched and applied extensively, especially in many areas of pattern recognition.

WT is able to address the major shortcoming of the STFT and create a more informative

time-frequency representation of a signal through the use of multiresolution analysis

(MRA). This shortcoming is overcome by varying the size of the window according to

the particular frequency band under current examination. The WT has a few different

forms: the continuous wavelet transform (CWT), the wavelet series, which is a

discretized version of the CWT, and the discrete wavelet transform (DWT), the latter of

which is used for feature extraction in this work [86].

3.6.1 CONTINUOUS WAVELET TRANSFORM

The CWT is similar to the STFT in the way it calculates the time-frequency

representation of a signal. Like the STFT, which uses (exponential) basis functions, the

CWT also uses basis functions that are multiplied with the function using a window that

is shifted through time. The bases account for the first major difference between the two

transforms. The STFT applies the FT each time the window is shifted, whereas the CWT

does not use the FT, but rather calculates the wavelet transform. The second major

difference between the two is the windowing function. As shown in equation (3.4), in the

STFT the size of the window remains constant regardless of which frequency is being

analyzed.
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For the CWT, two new parameters are introduced, scale (which relates to the

inverse of frequency) and translation (which relates to time). Using these two

parameters, the window function can change in width according to changes in frequency.

The general form of the CWT is as follows:

CWTS(z,-s) = Y '(r,s) = Jx(t)yI*(t)dt (3.5)

where z is the variable for translation, s is the variable for scale, x(t) is the signal being

transformed, and qy(t) is the transforming function called the mother wavelet, similar to

the exponential in the Fourier transform, and * denotes the conjugate.

The mother wavelet refers to the original wavelet function before any alterations

in scale or translation. The term wavelet refers to a "short" wave, or a wave where the

function is of very limited duration before decaying to zero. Figure 3.4 shows some

examples of different wavelets.
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The wavelet must satisfy two conditions. First, the wavelet must in fact be a

wave. To qualify for this, it must be oscillatory. Second, it must be of finite duration by

having a finite energy. This second requirement is achieved by nonzero amplitudes for

only a short period [86]. The restrictions are shown mathematically as follows:

J d (3.6)

and

49

0.0

04

0

0.2

-0.4

-6 -4 -2 0 2

Gaussian Wavelet

0 2 4 6

I : : : I I"r

I . ( I I



www.manaraa.com

(3.7)

The wavelet function is defined as:

,,3, (t) =- r  (3.8)

where the s and r variables allow for different dilations (or compressions) and translations

of the original mother wavelet. The square root term allows for energy normalization to

ensure that the transformed signal has the same energy at any given scale. By varying I,

the location of the wavelet varies along the time axis, while increasing s compresses the

width of the wavelet and decreasing s dilates the width of the wavelet [85,87]. An

example of compression and dilation, along with translational changes to a wavelet are

represented in Figure 3.5.
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S=, s=0c3 , s=

-10 -5 0 5 10 -10 -5 0 5 10
i=0, s= 0.5 t=-2, s=2

CWT'(r, s) = x(r, s) = Jx(t)* dt (3.9)

Equation (3.9) shows how the CWT is computed. The equation is evaluated for each

scale s and translation i. It can be thought of as the inner product of the original time

signal x(t) and the wavelet function yI(t).

The exact process starts with a scale of 1 and translation of 0. The better the

wavelet is correlated with the signal at that point, the higher the value obtained from the

transform. If the wavelet and the signal do not correlate at that given time, then a low

value is given by the transform. To compute the entire CWT, the scale is kept constant
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while the translation is incremented until the shifted wavelet reaches the end of the

signal. The scale is then increased or decreased and the process is repeated. This process

is repeated until all values for s and r have been calculated. Since this is a continuous

transform, all results are integrated over a continuous range rather than summed as will

be seen in the wavelet series and discrete wavelet transform. The exact range of the scale

values necessary for computation is typically governed by the range of frequencies

present in the signal.

3.6.2 WAVELET SERIES

Since almost all computations are done on computers, it is impractical to use a

continuous transform. To circumvent this limitation, some form of sampling is necessary

for the transform to be calculated. Sampling is done for the wavelet series through

dyadic grid sampling of the translation-scale plane. Since each scale represents a

frequency band, as the scales become larger, fewer samples of the data are needed to

meet the Nyquist criterion; number of samples > twice the highest frequency. The exact

sampling rate necessary can be found as follows:

N =1 N=AN 1  (3.10)

where N1 is the sampling rate at scale s/jand N2 is the necessary sampling rate for s2 given

that sl<s2, which relates to frequencies asfj>f2 [85].

The simplest way to achieve the dyadic grid sampling is by using logarithmic

discretization of the scale component and then adjusting step sizes for the translation

accordingly[87]. As the scale is increased logarithmically, the sampling rate is

simultaneously reduced for the translation resulting in the wavelet equation in (3.11):
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1 t-nboa'

7,1 t(t) _ nba (3 . 1 1)
ao

where m is an integer that controls the dilation of the wavelet and n is an integer that

controls the translation. It can be seen that the translation is directly related to the scale

where the size of the time steps are boa" . The most convenient values for ao and bo are ao

= 2 and bo = 1. When inserted into equation (3.11), this results in:

1 (t - n2m
Vmn,n (t) = V in (3.12)

2m 2

For the wavelet series, the wavelet function is required to be either orthonormal,

biorthogonal or frame. To satisfy the orthonormal case, the wavelets must be orthogonal

to each other and normalized to have unit energy:

1, if m m' and n = n'
m n,n (t)Wm',n' (t) dt = (3.13)

-n0 0 , otherwise

The analysis and synthesis wavelets then become the same as shown:

j
',k - Jx(t) *, k (t)dt (3.14)

or

x(t) = cW, j,k jk (t) (3.15)
jk

where c, is a constant that depends on the wave used and * denoted the conjugate. For

the biorthogonal and frame cases, equations (3.14) becomes:

S- jx(t)VJ, (t)dt (3.16)

[85,87].
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3.6.3 DISCRETE WAVELET TRANSFORM

While the wavelet series transform does compute the CWT in a discrete manner that can

be executed on a computer, it has one inherent drawback. The wavelet series is not a true

discrete transform and leaves significant redundant information in the signal after being

transformed. The solution for redundancy removal is the discrete wavelet transform

(DWT), which provides non-redundant information for decomposition and reconstruction

of the original signal.

The origins of the DWT stem from research completed in 1976. Crosier, Eseban,

and Garland were working on a method to decompose discrete time signals, while in the

same year Crochiere, Webber, and Flanagan were doing similar work on the coding of

speech signals, which was called subband coding [88,89]. Later in 1983, Burt created a

similar technique and called it pyramidal coding, now known as multiresolution analysis

[90]. In 1989, Vetterli and Le Gall improved the subband coding technique by removing

some redundancy issues found in the pyramidal coding technique [91]. These techniques

allow for a completely discrete version of the wavelet transform.

3.6.4 MULTIRESOLUTION ANALYSIS

The idea behind multiresolution analysis is to analyze a function at various levels of

approximation or resolution. This analysis allows a complicated function to be divided

into several simpler functions that can then be analyzed individually. Specifically, time

localization of spectral components is possible using this technique. During the

discretization process, there is also the ability to fluctuate sampling rates allowing for

significant reduction in the number of data points necessary to represent the signal [92].
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The process begins by sampling a function. The function is then sampled again

with the step size between samples doubled. This process is continued for a set number

of samplings with the final sampling of the data being the coarse approximation of the

function and information removed from each of the previous samplings being the details

at each level of the function.

Mathematically, each time the function is sampled, the approximation of the

signal is assigned to the approximation subspace As, while the information that is

removed is added to the wavelet subspace, Ws. AS is generated by the base:

k,s : 2s/2 0(2S t - k); k eZ (3.17)

while WS is generated by the base:

y k,s : 2 s/2 (2s t - k); k cZ (3.18)

Any function x,(t) and ys(t) can then be represented as linear combinations of

lk,s(t) and yk,s(t).

A scaling function with finite energy is used, as shown in (3.19), that generates a

nested sequence {Aj} as shown in (3.20).

0(t) e L2 (R) (3.19)

{0} +-.. c _ A 0 A1 c ... -+L 2  (3.20)

This scaling function must also satisfy a dilation equation:

(t) = go[k](at - k) (3.21)
k

where a > 0, and typically chosen to be 2. The scaling function, #(t), is a superposition of

scaled and translated version of itself. From this dilation function, it can be seen that:

x(t) e A, => x(2t) As+ (3.22)
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x(t) e AS, < x(t +2 - ) S A (3.23)

For each s, As is a subspace of As+1. Ws is complementary to As and when combined

with As, it forms As+1, meaning:

As W ={0} (3.24)

As 1 W, = A+ (3.25)

where G represents the direct summation.

The method which these subspaces are created can be related to x(t) and y(t) such

that xs(t) eAs and ys(t) e Ws. These functions can be calculated explicitly as:

x, (t) = ak,s (2 t - k) (3.26)
k

y, (t) = wk,sJ(2 t - k) (3.27)
k

To apply multiresolution analysis within the DWT, the subband coding technique

is implemented.

3.6.5 SUBBAND CODING

The method of implementing MRA discretely for the DWT is through subband coding

using digital filters. The filters used are quadrature mirror filters, which are half-band

lowpass and half-band highpass filters that are odd indexed, alternated, reversed versions

of each other. First, a lowpass filter with an impulse response of h[n] is selected, which

is determined by the wavelet being used. To create the corresponding highpass version

of the filter, the following conversion is performed on the impulse response of the

lowpass filter:
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g[L -1- n] = (-l1)"h[n] (3.28)

where g[n] is the highpass filter, h[n] is the lowpass filter, and L is the length of the filter

coefficients.

The transformation process begins with the original signal being filtered by the

lowpass filter. This filtering is done in discrete time by convolving the signal with the

impulse response h[n]:

x[n]* h[n]= x[k] . h[n - k] (3.29)
k=-oo

Since this process is done in discrete time, angular frequency will be used and

related to Hertz later. According to the Nyquist rule, the signal must be sampled at 2t if

the highest frequency found in the signal is a2, that is, twice the highest frequency present

in the signal. After applying the half band filter, the highest frequency left in the signal is

now nt/2, yet the sampling frequency is still 22, four times the highest frequency. Half the

points in the signal remain as redundant information that can be removed. The redundant

information removal is achieved by subsampling the signal by two, or simply removing

every other sample in the signal. This subsampling leaves the sampling rate at 2t, which

still meets the Nyquist criteria. Additionally, by reducing the sampling frequency of the

signal, the scale of the signal is increased by a factor of 2.

After the lowpass filter is applied, the resulting frequency band of the signal is 0-

2/2. The frequency range from t/2-t is obtained using the same procedure with the

highpass filter. Like the result of the lowpass convolution, the highpassed signal is also

subsampled by 2. The results from each filtering operation are shown below:

yo0 = x[n]. h[2k- n] (3.30)
n1
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Yiiigi =1 Zx[n] 'g[2k - (3.31

These equations relate to MRA in the form of the two-scale equation, shown in (3.21).

The outputs of the highpass filter become level 1 detail coefficients. The outputs of the

lowpass filter are the level 1 course approximation coefficients of the signal with the

higher frequencies removed.

This process is then repeated on the output of the lowpass filter using the same

high and lowpass filters. The second set of filters results in the level 2 detail coefficients

and an even courser representation of the original signal. Filtering is continued until

there is only one sample left after subsampling. All detail coefficients and the final level

of approximation coefficients represent the DWT of the original signal. For each of the

levels of the decomposition, the time resolution is reduced by half due to the subsampling

and the frequency resolution is doubled since the bandwidth is halved. A flowchart of the

process is shown in Figure 3.6.

SLOWPasS High acs2- , S ~4a

Input S'igalas H has j 28z5~2N
Lwas H i gh p s

Highpass sYs4A-12Hz
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3.6.7 RECONSTRUCTION OF THE SIGNAL

To create a discrete version of the wavelet transform, an inverse transform must exist that

allows perfect reconstruction of the original signal. An approximation of the signal at

any level can be reconstructed after the entire DWT has been taken. At any intermediate

level of reconstruction, two signals will be involved: the course approximation at that

level and a summation of the detail coefficients up to that level. These two signals can be

combined together to create the approximate reconstruction for that level. This

reconstruction can be written as:

x, (t) + y, (t) = I ak,sk, s k(t) + Wk,sIk, s (t) xs+ 1 (t) (3.32)
k k

where s is the scale level of reconstruction, a are the approximation coefficients, w are

the detail coefficients and 0 and yg are the scale and wavelet functions used.

By using the filter implementation, the resulting discrete conversion leads to:

x[n] = (Yhigh [k]. g[-n + 2k]) + (y10w[k]. h[-n + 2k]) (3.33)
k=-oo

where g[n] is the highpass filter, h[n] is the low pass filter, and Yhigh and Ytow are the

respective outputs from those filters. A complete reconstruction including all levels of

detail coefficients would require an additional summation over s. Supposing ideal half

band filters are used, perfect reconstruction can be obtained.

3.6.8 DAUBECHIES WAVELET

In 1987, Ingrid Daubechies created a wavelet that allows for perfect reconstruction of the

original signal. These wavelets are referred to as compactly supported orthonormal
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wavelets, and allow for the discrete transformation process. To accurately break down a

signal into its frequency components, the wavelet must match the frequency

characteristics of the signal. The better the wavelet matches the signal, the better the

structures of interest can be localized. The Daubechies family of wavelets provides a

smooth wavelet function through the use of vanishing moments, which relate to the order

of the wavelet. Increasing the number of vanishing moments in the wavelet allows a

smoother wavelet function capable of decomposing more complicated signals. The

Daubechies wavelets have one vanishing moment for every order of wavelet (ie. 4th order

wavelet has 4 vanishing moments). The wavelet order is abbreviated in the Daubechies

family as dbN, where N is the order of the wavelet [93]. A comparison of how the

vanishing moments affect the wavelet function is shown in Figure 3.7.

db2 db4
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db6

0 2 4 6 8 10

db8
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Figure 3.7: Daubechies wavelets with 2, 4, 6, and 8 vanishing moments.
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The Daubechies wavelets also work well for ERP analysis, as can be found in

numerous studies implementing this particular wavelet. For each of the vanishing

moments in the wavelet, two filter coefficients are required for both the high and low

pass filters to generate the smoothness and resolution necessary. For this research, the

db4 wavelet has been the wavelet of choice primarily due to its length in comparison to

the length of the signals being analyzed (8 sample filter to analyze a 256 sample signal).

The wavelet and scaling functions are shown in Figure 3.8, and an example of the

wavelet decomposition is shown in Figure 3.9 comparing the grand averages from normal

subjects and AD patients from Cohort B (Figure 3.3).

Scaling function phi Waveletfunction psi
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Figure 3.8: db4 scaling and wavelet functions along with decomposition and
reconstruction filters.
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3.7 CLASSIFICATION AND PATTERN RECOGNITION

To create an automated diagnostic tool, a classification system must be implemented.

The general idea behind classification is extraction of key distinctive features, which are

then used as inputs to a pattern recognition algorithm used to detect patterns in the

features and make a classification. There are numerous methods of feature extraction

including filtering, Fourier transform, MRA, and wavelets and just as many different

pattern recognition techniques. One of the most popular families of pattern recognition

tools is the neural networks, which have many different subsets. Neural networks take

the features extracted as input data into the algorithm, which then trains a set of

adjustable parameters of the neural network such as the weights of a multilayer

perceptron. The trained network, referred to as a classifier, can then generate a class

decision for previously unseen data used as input.

3.7.1 MULTILAYER PERCEPTRONS

The MLP is a feedforward artificial neural network consisting of a series of layers, where

each layer consists of a series of nodes. The general structure is shown in Figure 3.10.

The first layer is a group of input nodes on the left side and the signal then propagates to

the right (forward) through one or more hidden layers of the network and finally to the

output layer. The initial input layer performs no calculations on the data, but rather

serves as input to the following layers. The remaining nodes are used to perform

calculations to establish a set of synaptic weights, which can then be applied to any data

passing through the network. These weights are updated using the error back propagation
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algorithm. This algorithm consists of four general steps, initialization, presentation of

training data, forward computation, and backward computation, where the forward and

backward computation are iterated many times with each iteration representing a single

epoch. These steps are described in detail below [94]:

Hidden Layers

input Layer " Output Layer

Y1

X2

* *

1/r

Xi

Figure 3.10: General model of a multilayer perceptron network.

* Initialization -Before any data is input into the MLP, the synaptic weights are

initialized from a uniform distribution whose mean is zero. The variance is

chosen to make the standard deviation of the induced local fields of neurons lie at

the transition part of the sigmoid activation function, between the linear and

saturated parts. For this work, the logarithmic sigmoid was used for the activation

function.
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* Presentation of Training Data - A single epoch of training data is first input

into the network. The network then performs a forward and backward

computation for each example in the training set.

* Forward Computation - For the computation, a single training example is

denoted as (x(n),d(n)), where x(n) is the input vector at the first layer of nodes

and d(n) is the correct class presented to the output layer of nodes. The induced

local fields and function signals of the MLP are then computed on the forward

pass through the network, one layer at a time. The induced local field represented

as v('(n) for neuronj in layer 1 is:

Vj (n
) = w (; n)yl-1() (3.34)

i=o

where mi is the size of layer 1 and ij means from the output of neuron I to

the input of neuron j, and y,1 -)(n) is the output signal of neuron i in the previous

layer I-1 at iteration n. For i=O, yo-')(n)=+1 and woof)(n)=b"'(n) is the bias

applied to neuronj in layer 1. Based on the use of the sigmoid function, the output

signal from neuronj in layer / is:

yj =- p (vj (n)) (3.35)

where the sigmoid function, represented by <p is:

1
co(n) - _(3.36)

In the case where l= 1, or the input layer:

y =o) (n)-x 1 (n) (3.37)

where x1(n) is thejth element of the input vector x(n).
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For the case where 1 is the output layer:

y (n) = o1(n) (3.38)

where L is the depth of the network.

The error signal can then be computed based on the difference of d(n) and o(n):

e (n) = d (n)- o(n) (3.39)

Backward Computation - Once the error signal is generated, the backward

computation begins. The error can then be used to find the instantaneous error

energy in Equation (3.40) when C is the set of all possible output nodes.

s(n) =2 e(n) (3.40)
jc

The objective then becomes to minimize this error by adjusting the weights of the

nodes throughout the system using equation (3.41).

m

v (n) = w ,(n) y (n) (3.41)
i=1

The signal appearing at the output of neuron j is then computed using the

activation function as shown in Equation (3.42) where Equation (3.43) shows the

activation function.

yj (n) = p(vj (n)) (3.42)

1
(v ) = (3.43)

To be able to minimize this error, the gradient of the error with respect to the

weights must be calculated. This calculation is done using the steepest decent
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algorithm in which steps are taken of length of r in a direction negative to the

gradient as shown in equation (3.44).

ae(n) ae(n) ae1 (n) ay1(n) avi (n)
wji (n) Bej (n1) j (1) v (n) .

i 
(n)

The weight updates are then done as shown in Equation (3.45) and (3.46) for an

output node j assuming a logistic sigmoid activation function where gradient 6(n)

is the derivative of Equation (3.44) for Equation (3.45).

Aw , (n) = r6i8(n) y(n) (3.45)

(n) a[(n)-,y(n)d,(y(n)1-y1 (n)] (3.46)

For a hidden layer, the gradient function takes a slightly different form, that of

Equation (3.47).

ae(n) ac(n) ayJ(n)

where

= e(n) k aek(n)5vk(n) (3.48)
Y () k l) ayjn

and

vk (n)y = w (n) (3.49)

The gradient for each layer is calculated based on the gradient for the subsequent

layer:

= () = p '(vJ (n)) ~kn)wkj (n) (3.50)
k
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The synaptic weights for each layer are then adjusted according to the generalized

delta rule:

wj (n + 1) = w (n) +a[w(n -1)] + ,')(n)y- 1)(n) (3.51)

where 7 is the learning rate parameter and a is the momentum constant.

The forward and backward computation are then iterated by presenting new

epochs of training examples to the network until either the maximum number of

epochs or the error goal is reached.

3.7.2 SUPPORT VECTOR MACHINES

Despite the fact that MLP's are the most popular classifiers used in many pattern

recognition and classification applications, they do have some drawbacks. The training

and testing phases can be extremely computationally expensive. If a large number of

epochs are used for the back propagation scheme during the training phase, complex

classification problems can take hours or even days to complete. The weights of the

hidden layer nodes are randomly initialized each time a new MLP is created. As a result,

two MLP's being trained on the same set of data will each formulate distinct decision

boundaries leading to possible conflicts in classification on test data. For this reason,

multiple trials are necessary to be averaged together to gain an overall performance for a

given training and test set. The initial randomization could also lead to the algorithm

settling on a local minimum, rather than the correct global minimum. These drawbacks

are not meant to be an exhaustive list.

The solution to these inherent problems of the MLP comes in the form of the

support vector machine (SVM). SVMs are intended to provide classification in a
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computationally efficient manner by using high dimensional space. In this space,

hyperplanes are created and optimized to allow for maximal margins between classes. As

a result, the same decision boundaries are created each time on a given set of training

data in significantly less time than it takes to create an MLP.

3.7.2a VC DIMENSION AND RISK

In a typical classification algorithm, the goal of the training phase is to minimize the error

on the training data. The best possible classifier is the one that minimizes the expected

risk (or error) of the training function:

R(a)= Iy - f(x,a)IdP(x,y) (3.52)

wheref(x, a) is a set of functions for a given input x and choice of a , where a is the

corresponding weights or biases of the neural network, y is the corresponding true class

of x, and P(x,y) is the probability distribution, which is not necessarily known a priori.

Since the probability distribution is not usually known, the empirical risk is instead used:

Remp (a)-i Y - f(X,, a) |(3.53)

where p is the number of instances in the training data. As p grows towards infinity, Remp

approaches the expected risk, R. If p remains relatively small, as in this study, the

empirical risk can fail to approach R.

Rather than focusing on the error of the classifier, focus is placed on the Vapnik-

Chervonenkis (VC) dimension, which is a combination of reducing parameters and

retaining maximum classification of the classifier. The VC dimension describes the

maximum number of points that can be shattered by a givenf(a), where shattering is the
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ability to assign all possible class labels for a given number of data points. Shattering is

limited by the number of dimensions such that in d dimensional space, maximally d+1

points can be shattered through the use of hyperplanes.

The VC dimension can then be used to create a relationship between the expected

error and the empirical error:

h(log(2p / h) + 1)- log(q / 4)
R(a) < Rn,,p (a) + (3.54)

P

where r is chosen between 0 and 1, and h is the VC dimension. This relation can then

be used to minimize the upper bound of the expected risk with probability of 1- 1:

-M ln(2p / m) + 1 - (1/m)n(/4) (3.55)
41

where m is a number of training instances such that m<l.

The VC dimension can then be used along with the empirical risk to choose the

best possible function to serve as a classifier. Structural risk minimization (SRM) states

that the best choice of classifiers is the one that minimizes the sum of the empirical risk

and VC confidence. SRM allows the classifier to accurately describe the training data,

but not be overfitted to the data, which leads to the main strength of SVMs, in that the

margin between data classes are maximized.

3.7.2b SVM CLASSIFIERS

The SVM classifier works by maximizing the boundaries between classes. In the

simplest, linearly separable case, a hyperplane is used satisfying:

wrx + b = 0 (3.56)
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where w is normal to the hyperplane, IlwHI is the Euclidean norm of w and Ib/wH is the

perpendicular distance from the hyperplane to the origin as shown in Figure 3.12. Class

labels are encoded such that yi E [-1,1]. If d+ and d_ are the distances from the hyperplane

to the closest positive and negative data points, the maximal margin between the classes

is d± + cd. All points must then satisfy the following conditions:

xi w+b +1 for y=+l

x."w+b -l 1 for yi=-l

which can be combined to be:

yi (xi. w + b)-1 O Vi (3.58)

The margin is then defined as:

m=2/IIwII (3.59)

as shown in Figure 3.11.

Margin

- H2
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A 0
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The instances that are circled are those that lie on the two hyperplanes separating the

classes. These instances are referred to as the support vectors, since changing them will

completely change the decision boundary. To optimize the inequalities, Lagrangian

multipliers, al, are introduced, one for each constraint, such that the primal Lagrangian is:

1 II11w j2 - a y(xi"w +b)+ a, (3.60)
2 i=1 i=1

Lp is then minimized with respect to w, b and simultaneously the derivatives of Lp must

vanish with respect to a , which results in:

w = Zaiyi xii

Sy(3.61)
ai Yi= 0

By substituting (3.61) into (3.60), the dual formula if te Lagrangian is obtained:

LD = ai -- -xjy i jX " x (3.62)
i 2 i,j

The support vectors lying on either of the defining hyperplanes have Lagrangians where

a >0, whereas all other points will have ai=0 and lie on either side of the margin.

For any optimization problem with constraints, the Karush-Kuhn-Tucker (KKT)

conditions must be met. For the Langrangian, the conditions apply as follows:

aLP wv - yiXiv =0 v =1,..., d
aw

ab

a 0 Vi
a(yi(xi w +b)-1)= 0 Vi
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The above definitions ensure that the classes are linearly separable. Most real life

problems, however, are not completely linearly separable, or even separable at all. To

allow for non-separability in the data, slack variables are introduced. The constraints

from (3.57) become:

x,.w +b +1- for y = +1

x w + b< -1+ for yi =-1 (3.64)

,> 0 Vi

The effects of the slack variables are shown in Figure 3.12.

A A

A .A A ,

7/ y, 0(0

/ .
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with the only difference from the optimal hyperplane being the addition of the upper

bound of C on a , which essentially controls the width of the margin. The new primal

Lagrangian becomes:

L4 1 w 12 X{y, (xW + b) -1+ 1 }- p,1  (3.66)
2 i=1 i

where pi are the new Lagrange multipliers introduced to enforce positivity of the i. The

KKT conditions must once more be satisfied as follows:

v=l,...,d i=1,...,1

LP v i -w- i xiv = 0
awv

a
LP= -iyi=0

ab

LP = C - i - iSA (3.67)

y (x,. w + b) -1+ 0

i, >0

a(yi(x. "w+b)-1+i,) = 0

Satisfying these conditions allows for a linear SVM, capable of dealing with non-

separable data, however, it is still not capable of dealing with nonlinear decision

boundaries. To overcome this drawback, the data are mapped to a higher dimension,

where they are much more likely to be linearly separable by a higher dimensional

hyperplane. Since the data points of the Lagrangian only appear as dot products, as long

as those inner products can be calculated in the higher dimensional space, it is not
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necessary to perform any higher dimensional computation. Instead, computation is done

through the kernel trick. By replacing the xi x in the Lagrangian with the kernel:

K(x, xj) = (D(x) • D(x;) (3.68)

the calculations are still completed in approximately the same amount of time. The

kernels chosen for the kernel trick must satisfy Mercer's Theorem:

K(x, y) = (x)i I(y) (3.69)
i i

if and only if, for any g(x):

Jg(x)2dx <cJ (3.70)

then:

JK(x,y)g(x)g(y)dxdy > 0 (3.71)

with the final decision boundary:

g(x) = iyiK(xi, x)-+ b = ai yiK(xi, x)-+ b = 0 (3.72)
i=1 xieS

The new decision boundary is then a weighted sum of the kernel function with

respect to the support vectors, and the original Lagrangian from (3.62) turns into:

LD -"-- i - yiyjK(x,,x ) (3.73)

still subject to the constraints of (3.65).

The kernel used in this study is the Gaussian kernel:

K(x,y) = exp(- I x-y 12 /2 "2) (3.74)

where or is the width of the Gaussian [95,96].
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3.7.3 NEURAL NETWORK TRAINING

The data input to the neural network are the detail coefficients from the discrete wavelet

transform of the ERP signal. The Daubechies 4 wavelet is used throughout all tests.

With a sampling frequency of 256 Hz, a total of 7 detail levels are possible in addition to

1 course approximation level. Table 3.2 outlines the numbers of coefficients in each of

the levels. The number of coefficients in each level is enlarged slightly due to the filter

of length 8 for the db4 wavelet used to perform the wavelet transform.

Table 3.2. Breakdown of the number of coefficients in the different levels of detail and
approximation on the 256 Hz signal

dl d2 d3 d4 d5 d6 d7 a7

Frequency 64- 32-64Hz 16-32Hz 8-16Hz 4-8Hz 2-4Hz 1-2Hz 0-1Hz
band 128Hz

# of 132 69 38 22 14 10 8 8
coefficients

In this analysis, only the final three levels of detail coefficients are used, d5, d6,

and d7. This decision is based on the majority of the information from the P300

occurring in these frequency bands, as well as the previous work on this project. For

convenience, a modified naming scheme for the different levels is used:

Level 1 - 1-2 Hz (d7)

Level 2 - 2-4 Hz (d6)

Level 3 - 4-8 Hz (d5)

The wavelet transform retaining temporal information coupled with the fact that

the ERP signals used here are 1 second recordings from -200 ms to 800 ms allows for

further reduction in the number of features. Since the distinguishing features of the ERP

occur within 200-600 ms latency post-stimulus, the information from the first and last

200 ms can be effectively removed. This information removal reduces the coefficients
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such that level 1 contains 4 coefficients, level 2 contains 4 coefficients, and level 3

contains 6 coefficients. A comparison between the classification performance of the

different numbers of coefficients is presented later. These coefficients are used as the

input to the neural network during training and testing. Each level of coefficients for

each electrode for each type of stimulus is used to train a single classifier. As a result,

there are a total of 114 (19 electrodes x 2 stimuli x 3 frequency bands) possible classifiers

for Cohort A and 96 (16 electrodes x 2 stimuli x 3 frequency bands) possible classifiers

for Cohort B.

3.7.4 K-FOLD CROSS-VALIDATION

Training is done using a cross-validation procedure. During the training process, the set

of data is divided into K blocks, where each block contains 1/K of the data. The network

is then trained on all but the Kth block of data and tested on block K. The process is

repeated K times so that each block is used for testing once. The performances on each

test block are then averaged to obtain an overall performance for the dataset [97,98].

This process prevents a particularly hard or easy to classify set of data from biasing the

performance in a particular direction. The general process is shown in Figure 3.13.

1 2 " K-I K Run 1

1 2 K- K Run2

1 2 .- **.K-I K RunK-1

1 2 .. K-I K : RunK
Figure 3.13: K-fold cross-validation. The highlighted block is the test data for each run

with all other blocks used for training.
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By setting K equal to the number of instances, or subjects, a leave-one-out cross-

validation is obtained. For leave-one-out, each subject is removed one at a time while the

rest of the cohort is used as training data. The removed patient is then used as testing

data. Each subject is used for testing once during the process. As a result, the

performance is either 0 or 1 for each run depending on whether the subject was classified

correctly or not. These 0's and l's can then be averaged to create a final performance of

the classifier. This type of cross-validation is ideal for this dataset since the size of the

dataset is not large. It also ensures that the classifier is trained on the maximum amount

of data so that the classifier can make the best possible classification on the test subject.

The drawback is that the computational time is significantly higher than using a smaller

K.

3.8 DATA FUSION

Data fusion is the process of combining data or information from multiple sources to

achieve a more reliable solution. In pattern recognition, there are many possible ways of

performing fusion. Most commonly, the fusion occurs either at the feature level or the

decision level. Based on empirical results from [82] as well as additional experiments,

decision level fusion was determined to be the most effective approach in this study.

3.8.1 ENSEMBLE OF CLASSIFIERS

The decision level data fusion approach is performed through an ensemble of classifiers;

also known as a committee of learners, mixture of experts, classifier ensemble, multiple

classifier system, or consensus theory. The idea behind the ensemble of classifiers is
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similar to consulting multiple doctors for additional opinions. By utilizing multiple

classifiers, all trained on different training sets or different regions of the same feature

set, and then combining their decisions together, a more robust and reliable classifier can

be created. This better decision is achieved through each of the classifiers generating

different decision boundaries and thereby producing different errors. When the decisions

from the classifiers are combined together, the errors can be eliminated. To ensure the

most benefit from an ensemble system, a collection of adequately diverse classifiers

trained on complementary information is necessary. Within this study, the ensembles are

created from classifiers trained on different electrode responses or different frequency

bands of the same electrode response. One of the key components of this thesis then is to

determine what electrode responses should be added to the ensemble to provide the most

robust decision. A model of how an ensemble system works is shown in Figure 3.14.

The classifier fusion is executed using various combination rules and is dependent upon

the type of classifier being used.

Feature Vectors Classifiers

Fusion Output
,, :4/P

/ -M
*

X

o :LIII::::lIIJII::::j{6:::71

Figure 3.14. Model of an ensemble of classifiers system.
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3.8.2 COMBINATION RULES

The combination rules used for the data fusion were sum rule, product rule, and weighted

majority voting for MLP ensembles and simple majority voting for SVM ensembles. For

the MLP ensembles, a continuous valued dij E [0,1] is used to represent the degree of

support given by the classifier Ci to class j, where i=1,...,N;j=l,...,c; N is the total

number of classifiers, and c is the total number of classes.

Using these supports, the sum and product rules can be calculated. For these two

rules, the support for each of thej classes from each of the c classifiers are either summed

or multiplied together to yield a single support for each class. The class with the highest

support is then selected as the chosen class for that particular ensemble. The rules can be

shown mathematically as:

i1N
(x) = - d,, (x), d,,; (x) e [0,1]

=N (3.75)
1N N (x) = - d. (x), d1 , (x) e [0,1]

For the weighted majority vote rule (WMV), the supports themselves are not

needed, but rather only the accuracy of the selected class labels, d1/ E {0,1 }. If the given

classifier selects the correct class, a "1" is assigned and "0" otherwise. Next, d,; is

multiplied by a weighting factor based on the error of the training process:

W (T) = log (1/fT) (3.76)

where /lTn is the normalized training error for classifier Ti.

The class decision for each instance can then be found as classj that provides

maximum support:
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N

i(x) = W ( )d, (x), dj (x) e {0,1} (3.77)
/'=1

For SVMs, there are no separate class supports output by the classifier, therefore

only the true and assigned class labels are used. By removing the weighting term from

the WMV rule, a simple majority voting scheme can be used for SVMs. In this case dj

follows the same form as for WMV, with selection of the appropriate class done as

follows:

N

ji1(x) = d,j (x), d,1 (x) E {0,1} (3.78)
j=1

In this case, the ensemble is simply selecting the class that the majority of independent

classifiers originally selected.

3.8.3 DEMPSTER-SHAFER COMBINATION RULE

Based on Dempster-Shafer (DS) theory, DS combination uses decision templates (DT)

and the method shown below to combine classifiers and choose a class. A decision

profile (DP) is a TxC matrix that displays the output of each classifier, where T is the

number of classifiers and C is the number of classes. Using the training data, decision

templates (DT1, ... ,DTc) are created based on typical decision profiles for each class.

Next, decision profiles are created for every new instance x. Each DP(x) is compared to

the C decision templates using Dempster-Shafer combination in order to determine which

class the instance belongs to. The advantage to this method is that classifiers that

consistently give support to the wrong class will not decrease the overall performance of

the ensemble.
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Equation (3.79) is used to calculate the "proximity" between the ith row of DTj

and the output of the ith classifier for instance x, where . II represents Euclidean distance

between these two vectors:

(1+II DT -D(x)I 2) -1

k= 1 (1+ DT -Di(x ) 2)
-1

Belief degrees are then calculated for every classj and classifier i as:

b (D, (x) k(x)) (1 - ( (x))
bj(D(x))1- D ,i(x)[1- 171k j( ~-k,i(x))] (3.80)

Finally, the class of x is selected based on the degrees of support for each class j,

which are

T

S= K bj (D i (x)), j = 1,..., C (3.81)

3.9 MEDICAL DIAGNOSTIC MEASURES

In medical studies, several measures of the effectiveness of the test are generally included

along with classification or diagnostic performance numbers. These metrics are based on

binary classification where the diagnosis is either positive or negative for a particular

condition. The metrics used here are sensitivity, specificity and positive predictive

values. Table 3.3 outlines how the metrics are defined.

metrics are derived.
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Sensitivity refers to the probability of a positive diagnosis when the condition is

present in the subject. In this study, sensitivity is defined as the ratio of AD subjects

correctly identified by the algorithm. Specificity refers to the probability of a negative

diagnosis when the condition is not present in the subjects. In this study, specificity is

defined as the ratio of cognitively normal subjects correctly identified by the algorithm.

Positive predictive value (PPV) refers to the probability that the subject has the disease

when tested positive by the algorithm. In this study, PPV is defined as the proportion of

subjects identified as AD by the algorithm who actually have AD. Negative predictive

value (NPV) refers to the probability that the subject does not have the disease when

tested negative by the algorithm. In this study, NPV is defined as the proportion of

subjects identified as cognitively normal by the algorithm who actually are cognitively

normal. These metrics can be calculated according to Table 3.3 as follows:

Sensitivity = A(3.82)A+C (.2

Specificity = D (3.83)
D+B

A
PPV = AB (3.84)

NPV-CDC+D= (3.85)
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CHAPTER 4

RESULTS

The description of results from both studies follow a similar procedure. The ERPs are

first decomposed using a discrete wavelet transform. The coefficients are used to train

and test an MLP or SVM in a leave-one-out scenario. Decision level fusion is then used

to combine classifiers, each trained on different electrode locations and stimulus types, to

create an ensemble decision, which becomes the final classification or diagnosis from the

algorithm. The presentation of results is as follows:

" Individual classifier results from Cohort A using MLPs
" Individual classifier results from Cohort B using MLPs
" Individual classifier results from Cohort A using SVMs
" Individual classifier results from Cohort B using SVMs
" Data fusion results from Cohort A using MLPs
" Data fusion results from Cohort A using SVMs
" Data fusion results from Cohort B using MLPs
" Data fusion results from Cohort B using SVMs
• 20% test results from Cohort A
• 20% test results from Cohort B
" Mixed cohort test results
" Cross cohort training/testing results

4.1 SINGLE CLASSIFIER RESULTS FROM COHORT A USING MLPS

Before applying data fusion, all 114 three-tuple (electrode location, frequency band,

stimulus) combinations were analyzed individually to determine the best performing

responses to use in an ensemble. Also shown is a comparison between using the full set

of wavelet coefficients at each level and using only the middle 60% of coefficients

focusing on the prominent features of the ERP such as the P200, N100, P300, etc. Only
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the three lowest frequency bands were used as they have been shown to be the most

informative [82]. Results are presented in Table 4.1 for ERPs obtained in response to

target stimuli and Table 4.2 for ERPs obtained in response to novel stimuli as averages of

10 independent trials with a 95% confidence interval. Classifier performances over 60%

are bolded and highlighted.

Table 4.1: Results for classifiers trained on target stimuli responses from all 19
electrodes at all 3 feature levels for the subjects in Cohort A using MLPs. Also shown is

a comparison between using the full set of wavelet coefficients and only the middle
coefficients.

Electrode
Response 1-2 Hz, all 1-2 Hz, middle 2-4 Hz, all 2-4 Hz, middle 4-8 Hz, all 4-8 Hz, middle

C3 49.43 + 2.19% 45.21 + 2.83% 48.03 + 1.82% 56.62 ± 2.51% 51.41 ± 2.86% 48.17 ± 1.91%

C4 51.54 ± 2.37% 55.21 ± 2.39% 54.23 ± 1.93% 51.69 ± 1.33% 49.30 ± 2.24% 52.25 ± 2.67%

CZ 46.47 ± 1.88% 50.42 ± 2.60% 52.25 ± 2.12% 54.08 ± 2.28% 50.28 ± 2.90% 47.32 ± 2.64%

F3 44.65 ± 2.43% 47.89 ± 1.92% 49.72 ± 2.24% 50.99 ± 2.57% 50.28 ± 3.35% 53.38 ± 1.56%

F4 58.59 ± 2.25% 58.03 ± 1.95% 47.04 ± 3.01% 44.65 ± 2.31% 52.54 ± 2.31% 48.73 ± 1.97%

F7 56.33 ± 3.05% 51.55 ± 1.97% 48.87 ± 2.00% 53.24 ± 3.04% 44.23 ± 1.55% 50.00 ± 1.81%

F8 56.90 ± 1.28% 65.21 ± 1.88% 9.44 ± 1.60% 52.54 ± 2.34% 51.83 ± 2.60% 52.34 ± 3.12%

FP1 57.60 ± 1.86% 57.18 ± 2.47% 58.45 ± 1.85% 57.32 ± 2.98% 44.23 ± 1.89% 42.67 ± 3.07%

FP2 62.39 ± 1.96% 62.39 ± 2.21% 50.99 ± 2.60% 48.59 ± 1.69% 49.72 ± 2.14% 44.51 ± 3.17%

FZ 54.51 ± 3.54% 58.87 ± 1.32% 53.52 ± 3.54% 52.25 ± 2.41% 48.59 ± 1.89% 48.45 ± 2.78%

01 42.26 ± 2.00% 42.82 ± 1.89% 50.99 ± 2.39% 51.83 ± 2.60% 45.35 ± 1.99% 47.46 ± 2.88%

02 57.89 ± 1.65% 57.47 ± 1.83% 47.18 ± 1.93% 47.47 ± 2.61% 47.18 ± 1.60% 49.16 ± 1.30%

P3 59.86 ± 2.31% 63.24 ± 1.94% 60.28 ± 2.84% 60.56 ± 2.40% 53.24 ± 2.17% 50.56 ± 2.50%

P4 61.27 ± 1.97% 60.14 ± 1.84% 61.97 ± 1.49% 60.56 ± 2.24% 40.56 ± 1.95% 40.99 ± 3.67%

P7 62.68 ± 2.11% 54.79 ± 2.32% 57.61 ± 0.60% 51.83 ± 3.14% 58.03 ± 2.95% 59.72 ± 2.11%

P8 56.48 ± 2.56% 54.37 ± 2.37% 52.25 ± 2.22% 55.63 ± 2.70% 45.35 ± 2.45% 35.92 ± 2.70%

PZ 62.25 ± 1.71% 52.53 ± 1.96% 57.75 ± 2.95% 58.45 ± 2.28% 45.78 ± 2.61% 44.65 ± 2.61%

T7 48.73 ± 1.459% 53.66 ± 2.32% 56.76 ± 2.40% 54.79 ± 2.44% 58.17 ± 1.80% 62.82 ± 2.44%

T8 57.04 ± 2.11% 59.43 ± 2.13% 51.13 ± 2.37% 51.83 ± 3.37% 42.68 ± 1.96% 42.26 ± 2.52%
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Table 4.2. Results for classifiers trained on novel stimuli responses from all 19 electrodes
at all 3 feature levels for the subjects in Cohort A using MLPs. Also shown is a
comparison between using the full set of wavelet coefficients and only the middle

coefficients.
Electrode
Response 1-2 Hz, all 1-2 Hz, middle 2-4 Hz, all 2-4 Hz, middle 4-8 Hz, all 4-8 Hz, middle

C3 49.58 ± 2.33% 55.21 ± 2.36% 62.95 ± 2.49% 61.97 ± 2.07% 50.42 ± 1.87% 53.66 ± 2.70%

C4 51.13 ± 2.66% 54.79 ± 2.01% 60.70 ± 2.47% 57.60 ± 1.12% 45.07 ± 1.72% 48.87 ± 1.92%

CZ 55.77 ± 2.91% 55.35 ± 1.92% 59.01 ± 1.51% 65.49 ± 2.22% 50.28 ± 2.63% 51.83 ± 1.53%

F3 51.83 ± 3.02% 53.52 ± 3.35% 49.71 ± 3.33% 50.98 ± 2.23% 49.43 ± 2.56% 40.28 ± 1.77%

F4 57.47 ± 2.84% 56.48 ± 2.05% 53.80 ± 1.79% 52.53 ± 2.49% 50.00 ± 1.64% 48.02 ± 1.56%

F7 50.70 ± 3.72% 54.93 ± 1.84% 53.38 ± 2.86% 49.43 ± 2.05% 38.03 + 1.63% 42.67 ± 3.44%

F8 60.99 ± 2.61% 61.41 ± 1.45% 8.87 ± 2.43% 54.64 ± 2.51% 44.78 ± 3.70% 43.10 ± 2.67%

FP1 65.35 ± 2.08% 66.90 ± 2.75% 58.02 ± 1.87% 61.26 ± 2.01% 49.29 ± 2.21% 53.24 ± 3.91%

FP2 62.40 ± 1.63% 57.61 ± 2.09% 55.49 ± 2.15% 59.01 ± 2.99% 49.29 ± 3.03% 42.81 ± 1.93%

FZ 45.49 ± 3.17% 50.42 ± 1.95% 48.73 ± 2.28% 57.60 ± 2.44% 53.52 ± 2.30% 43.52 ± 3.61%

01 53.10 ± 1.22% 54.64 ± 1.66% 50.42 ± 1.57% 54.08 ± 2.83% 44.08 ± 2.19% 47.88 ± 2.63%

02 62.39 ± 2.07% 66.75 ± 2.47% 56.90 ± 2.18% 59.71 ± 2.41% 43.09 ± 2.58% 44.22 ± 3.22%

P3 61.97 ± 2.34% 60.70 ± 1.98% 60.98 ± 1.54% 67.74 ± 1.82% 54.93 ± 3.14% 64.93 ± 1.56%

P4 60.99 ± 2.14% 61.69 ± 2.23% 65.07 ± 1.43% 62.67 ± 1.35% 52.11 ± 3.12% 53.94 ± 2.27%

P7 57.32 ± 2.24% 51.54 ± 1.81% 58.59 ± 2.70% 60.98 ± 2.52% 50.70 ± 2.77% 56.05 ± 1.48%

P8 62.25 ± 2.23% 60.70 ± 1.94% 62.39 ± 2.66% 66.33 ± 1.74% 59.71 + 1.97% 51.54 ± 1.55%

PZ 59.72 ± 2.50% 67.46 ± 2.26% 65.07 ± 2.06% 72.25 ± 1.49% 63.09 ± 3.04% 70.14 ± 2.30%

T7 48.17 ± 4.13% 48.73 ± 1.77% 47.46 ± 2.63% 47.32 ± 3.17% 50.98 ± 2.03% 46.33 ± 2.19%

T8 61.97 ± 1.22% 65.91 ± 1.62% 53.66 ± 2.41% 55.06 ± 2.26% 38.45 ± 2.58% 52.25 ± 2.32%

Significant information is presented in these two tables. The comparison between

using the full set of wavelet coefficients and only the middle coefficients shows that both

sets perform similarly. For the target set, the middle coefficients performed better in 30

of the 57 three-tuples and for the novel set the middle coefficients performed better in 38

of the 57 three-tuples. Based on this analysis, the majority of the information within the

wavelet coefficients that distinguishes between AD and normal is contained within the

middle 60%. For the duration of this thesis, all training and testing is done using only

those middle coefficients. By using only the middle coefficients, the focus is on the

prominent features of the ERP. In addition, a reduced number of features are used to
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train and test the MLP by nearly half, effectively reducing computation time, which is

very appealing when considering this as a real world application.

Looking at only the middle coefficients, it can be seen that the novel responses

perform slightly better than the target responses. The peak performance for the target

responses was 65.21% using the F8 electrode response from 1-2 Hz. The peak

performance for novel responses was 72.25% using the Pz electrode response from 2-4

Hz. In addition, the novel responses had many more electrode responses yielding

performance figures in the 60-65% range. For each set, the performance figures for the

entire scope of the head were generally in the 45-55% range with the higher numbers

coming from electrode responses in the parietal region. It is clear that these numbers are

still too low to provide a confident diagnosis between AD and normal, which leads to the

implementation of ensemble systems.

4.2 SINGLE CLASSIFIER RESULTS FROM COHORT B USING MLPS

Similar to the analysis from Cohort A, the data from Cohort B were first analyzed on the

individual three-tuple levels. Since the data were recorded by different technicians using

different equipment and preprocessed using an automated system rather than by an EEG

expert, it is necessary to compare the individual results. Like Cohort A, the data are

presented in two tables, one for target and one for novel, as averages of 10 independent

leave-one-out trials along with a 95% confidence interval. For Cohort B, only the middle

coefficients were analyzed based on the results of Cohort A. Also important to note is a

slight change in the electrode placements. The total number of electrodes has been

reduced from 19 to 16 due to equipment limitations. The F7 and F8 locations have been
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removed completely and the 01 and 02 locations have been replaced by a single Oz

electrode. The results are in Table 4.3 for target responses and Table 4.4 for novel

responses. Again, classifiers performing above 60% are highlighted and bolded.

Table 4.3: Results for classifiers trained on target stimuli responses from all 16
electrodes at all 3 feature levels for the subjects of Cohort B using MLPs.

Electrode
Response 1-2 Hz 2-4 Hz 1-2 Hz

C3 67.58 ± 2.39% 50.00 ± 1.59% 58.06 ± 2.89%

C4 65.81 ± 1.69% 54.52 ± 3.11% 56.77 ± 2.05%

CZ 50.48 ± 2.89% 52.74 ± 1.39% 56.94 ± 2.25%

F3 52.42 ± 3.39% 50.97 ± 2.34% 63.23 ± 2.40%

F4 56.77 ± 2.28% 47.90 ± 2.16% 67.58 ± 2.26%

FZ 58.55 ± 2.20% 54.52 ± 2.10% 68.23 ± 2.25%

FP1 52.26 ± 1.26% 62.10 ± 2.34% 46.94 ± 2.26%

FP2 49.19 ± 1.72% 65.81 ± 2.05% 47.26 ± 2.16%

Oz 62.58 ± 2.19% 57.90 ± 1.84% 51.13 ± 2.75%

PZ 68.39 ± 1.98% 56.61 ± 2.18% 44.19 ± 2.54%

P3 57.10 ± 3.50% 55.16 ± 2.28% 49.68 ± 2.36%

P4 58.87 ± 2.79% 59.19 ± 2.53% 59.84 ± 4.50%

P7 56.13 ± 2.05% 47.26 ± 1.82% 54.35 ± 1.87%

P8 62.58 ± 1.45% 62.10 ± 3.21% 58.06 ± 2.85%

T7 51.94 ± 2.91% 50.81 ± 2.69% 50.48 ± 2.75%

T8 61.77 ± 2.20% 41.45 ± 2.02% 57.90 ± 3.13%
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Table 4.4. Results for classifiers trained on novel stimuli responses from all 16 electrodes
at all 3 feature levels for the subjects of Cohort B using MLPs.

Electrode
Response 1-2 Hz 2-4 Hz 4-8 Hz

C3 44.84 ± 2.44% 53.55 ± 1.31% 69.84 ± 2.02%

C4 46.94 ± 2.35% 55.00 ± 1.55% 58.39 ± 2.71%

CZ 43.39 ± 1.73% 53.87 ± 2.03% 59.84 ± 2.18%

F3 48.06 ± 2.01% 55.97 ± 3.47% 66.94 ± 3.06%

F4 55.48 ± 2.25% 68.06 ± 1.63% 62.58 ± 2.63%

FZ 44.84 ± 2.10% 51.77 ± 2.35% 62.58 ± 1.45%

FP1 45.00 ± 2.08% 52.26 ± 1.54% 52.10 ± 2.33%

FP2 42.74 ± 3.02% 48.71 ± 2.84% 60.00 ± 1.69%

Oz 66.61 ± 1.87% 72.74 ± 2.69% 47.26 ± 2.57%

PZ 50.00 ± 3.05% 60.16 ± 2.60% 60.00 ± 1.96%

P3 62.90 ± 2.37% 60.16 ± 2.16% 60.81 ± 1.65%

P4 68.71 ± 1.26% 59.52 ± 1.67% 57.90 ± 2.06%

P7 68.71 ± 2.25% 57.90 ± 2.08% 54.52 ± 1.80%

P8 67.42 ± 2.63% 66.45 ± 2.36% 59.84 ± 2.26%

T7 52.90 ± 2.23% 47.90 ± 2.71% 59.35 ± 2.98%

T8 53.71 ± 1.92% 66.61 ± 2.16% 60.48 ± 2.69%

Similar to the results from Cohort A, the responses to novel tones yielded many

more classifiers performing over the 60% level. The majority of these classifiers also

occur from responses in the parietal region of the head, as expected based on the results

from Cohort A. The two cohorts differ in that Cohort B provides some high performing

classifiers in the frontal region, predominantly in the 4-8 Hz range. The top performing

classifier for the target responses was Pz on 1-2 Hz at 68.39%. For the novel responses,

however, the Pz electrode responses did not perform well at all. Oz was the top

performing electrode response on 2-4 Hz at 72.74%. This change could be due to the

relatively close location of the Oz electrode to the Pz electrode, although still surprising.
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4.3 SINGLE CLASSIFIER RESULTS FROM COHORT A USING SVMS

To compare the performance of SVMs against MLPs, the single classifiers were looked at

individually, this time using SVMs as the base classifier. Since SVM provides the

optimal boundary each time, it is not necessary to average 10 trials together and therefore

results are presented as single trials. Additional trials would yield identical results.

Target responses are presented in Table 4.5 and novel responses in Table 4.6.

Table 4.5: Results for classifiers trained on target stimuli responses from all 19

electrodes at all 3 feature levels for the subjects of Cohort A using SVMs.
Electrode
Response 1-2 Hz 2-4 Hz 4-8 Hz

C3 45.07% 54.93% 50.70%

C4 50.70% 47.89% 33.80%

CZ 46.48% 38.03% 45.07%

F3 50.70% 46.48% 53.52%

F4 50.70% 49.30% 50.70%
F7 56.34% 43.66% 46.48%

F8 59.15% 50.70% 53.52%

FZ 50.70% 52.11% 50.70%

FP1 63.38% 64.79% 42.25%

FP2 69.01% 53.52% 43.66%

01 40.85% 53.52% 53.52%
02 49.30% 46.48% 52.11%
PZ 49.30% 59.15% 42.25%
P3 57.75% 56.34% 56.34%

P4 54.93% 66.20% 53.52%

P7 59.15% 52.11% 59.15%

P8 63.38% 66.20% 45.07%

TZ 53.52% 52.11% 50.70%
T8 50.70% 47.89% 47.89%
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Table 4.6. Results for classifiers trained on novel stimuli responses from all 19 electrodes
at all 3feature levels for the subjects of Cohort A using SVMs.

Electrode
Response 1-2 Hz 2-4 Hz 4-8 Hz

C3 53.52% 70.42% 57.75%

C4 40.85% 63.38% 47.89%

CZ 54.93% 69.01% 50.70%

F3 54.93% 45.07% 53.52%

F4 46.48% 57.75% 46.48%

F7 56.34% 60.56% 45.07%

F8 60.56% 50.70% 45.07%

FZ 46.48% 61.97% 52.11%

FP1 61.97% 60.56% 61.97%

FP2 49.30% 49.30% 36.62%

01 60.56% 47.89% 47.89%

02 52.11% 59.15% 47.89%

PZ 61.97% 70.42% 63.38%

P3 60.56% 63.38% 69.01%

P4 56.34% 54.93% 52.11%

P7 50.70% 61.97% 54.93%

P8 63.38% 64.79% 52.11%

TZ 42.25% 49.30% 42.25%

T8 47.89% 45.07% 53.52%

Results in both tables are similar to the results from the MLPs, although generally

the performance is slightly lower for the SVMs. FP2 yielded the highest performance for

the targets at 69.02% from 1-2 Hz and Pz and C3 tied for the highest for novel responses

at 70.42%, each from 2-4 Hz. The majority of high performing classifiers again

originated from the parietal region. Based on these early results, the MLP seems to be

the superior classifier in terms of performance, although the SVM was able to run at a

fraction of the time. For the MLP to generate 10 independent leave-one-out trials for all

electrode responses at each frequency band, computation time was roughly 65 hours, or

approximately 6.5 hours per trial. The single trial from the SVM training completed in
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just under 6 minutes with the added benefit of achieving identical results each time

therefore eliminating the need for multiple trials.

4.4 SINGLE CLASSIFIER RESULTS FROM COHORT B USING SVMS

Cohort B was tested in the same fashion using SVMs. Results are presented in Table 4.7

for target responses and Table 4.8 for novel responses as single trial performances.

Table 4.7. Results for classifiers trained on target stimuli responses from all 16
electrodes at all 3 feature levels for the subjects of Cohort B using SVMs.

Electrode
Response 1-2 Hz 2-4 Hz 4-8 Hz

C3 70.97% 43.55% 58.06%

C4 67.74% 46.77% 56.45%

CZ 54.84% 54.84% 54.84%

F3 56.45% 46.77% 54.84%

F4 51.61% 50.00% 53.23%
FZ 50.00% 53.23% 59.68%

FP1 62.90% 62.90% 53.23%

FP2 51.61% 69.35% 38.71%

OZ 62.90% 64.52% 51.61%

PZ 67.74% 61.29% 46.77%

P3 54.84% 51.61% 50.00%

P4 59.68% 58.06% 66.13%

P7 48.39% 56.45% 51.61%

P8 59.68% 70.97% 64.52%

TZ 56.45% 50.00% 43.55%

T8 59.68% 46.77% 51.61%
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Table 4. 8. Results for classifiers trained on novel stimuli responses from all 16 electrodes
at all 3 feature levels for the subjects of Cohort B using SVMs.

Electrode
Response 1-2 Hz 2-4 Hz 4-8 Hz

C3 45.16% 50.00% 62.90%

C4 48.39% 53.23% 56.45%

CZ 53.23% 51.61% 59.68%

F3 30.65% 51.61% 70.97%

F4 56.45% 74.19% 64.52%

FZ 50.00% 54.84% 53.23%

FP1 45.16% 59.68% 53.23%

FP2 41.94% 45.16% 54.84%

OZ 74.19% 72.58% 41.94%

PZ 53.23% 56.45% 58.06%

P3 64.52% 61.29% 59.68%

P4 67.74% 58.06% 54.84%

P7 66.13% 53.23% 64.52%

P8 62.90% 70.97% 58.06%

TZ 58.06% 40.32% 58.06%

T8 53.23% 72.58% 59.68%

For Cohort B, results from the MLP training versus SVM training were again

similar, with some variance on an electrode by electrode basis. The maximum target

response performance was 70.97% by C3 1-2 Hz and P8 2-4 Hz while the highest novel

response was 74.19% by F4 2-4 Hz and Oz 1-2 Hz. Each of these maximums is higher

for the SVMs than the MLPs. This trend is true for most of the electrode/frequency

bands, but not all. For example, novel F3 1-2 Hz went from 48% using MLPs to 30%

using SVMs. From the individual results for this cohort, it would seem that the ideal

choice for a classifier would be the SVM since it provides better performance in a much

shorter time.

Aside from the intricacies of the different classifiers, some other points can be

observed from this comparison. In general, over the scope of all the different

experiments, the parietal region is consistently the best performing region individually.
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This characteristic is expected since the P300 is suspected to originate from this region of

the head. The results also give some validity to this process, showing that the EEG was

able to extract that information and through the use of neural networks distinguish

between the Alzheimer's disease patients and the controls at a reasonable confidence.

There were also significant performances from frontal electrodes, specifically for Cohort

B, which could suggest the possibility of complementary information for use in

diagnosis. To further investigate, data fusion was explored using these individual

classifiers.

4.5 DATA FUSION RESULTS FROM COHORT A USING MLPS

In order to achieve a higher diagnostic performance, decision level data fusion was

implemented. The decisions from the individual classifiers were combined through

combination rules such a product rule, sum rule, simple and weighted majority voting,

and Dempster-Shafer rule. Early attempts at data fusion on this project focused on the on

Fz, Cz, and Pz electrode responses. Based on the individual classifier performances, it

would make the most sense to try and combine the best performing electrodes, which are

found predominantly in the parietal region. This region was evaluated exclusively in

[82], although the combinations of responses were selected seemingly at random. The

first step here was to look at all possible combinations of electrode responses in the

region at all different frequency bands.

With a total of 5 electrodes in the region (Pz, P3, P4, P7, and P8), two stimuli

(novel and target), and three frequency bands (1-2 Hz, 2-4 Hz, and 4-8 Hz), there are 30

different three-tuple combinations to be combined. The responses were first combined
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into ensembles of 3, 5, and 7 classifiers separately for each stimulus type. Electrode

responses were combined exhaustively resulting in 455 unique combinations of 3

electrode responses (15 choose 3), 3003 combinations of 5 classifiers, and 6435

combinations of 7 classifiers. Training was done using MLPs and results are an average

of 10 independent leave-one-out trials. The diagnostic performances for the top 5

ensembles for combinations of 3, 5, and 7 classifier responses are shown in Table 4.9

along with the 95% confidence interval and combination rule that was used.

Table 4.9: Best performing ensembles for target and novel responses for ensembles of
3, 5, and 7 classifiers trained using~ MLPs for Cohort A.

The results shown in this table support the feasibility of data fusion in increasing

performance. As shown by the novel combinations of 7 classifiers, the best performance

has increased from 72% to 79%, a statistically significant increase. This performance is

also attainable by multiple different combinations of responses since the confidence
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Target - Combinations of 3
Electrodes/ Mean Cl Comb
Levels (%) (%) Rule

P31,P32,P73  70.0 2.8 Sum
P31,P41,P42  69.6 3.0 Sum
P317P42,P73  69.3 2.3 Sum
Pz3,P31,P42  69.2 3.2 Sum
P31,P32,P42  69.2 2.4 Sum

Target - Combinations of 5
Pz3 , P31 ,P3 2, P4 2, P73  70.1 3.2 W MV
P31,P32,P411P42,P73  70.1 2.2 Sum
Pz2,Pz3,P32, P33,P73  69.9 2.9 Sum
Pz2,P31,P32, P41,P73  69.7 2.6 Sum
Pz2,Pz3,P31, P41,P42  69.2 2.4 Sum

Target - Combinations of 7
Pz2, P3 1 P32,

P42,P72,P73, P81  70.0 2.1 Prod
Pz1 ,Pz2,P31,

P32,P33,P73, P81  69.4 3.6 Prod
Pz3, P31 ,P3 2,

P41,P421P73, P82  69.4 2.6 Sum
Pz2, Pz3, P3 1,

P32,P42,P73, P81  69.2 2.5 Prod
Pz3, P31 ,P32,

P41,P42,P73, P81 69.0 2.6 Sum

Novel - Combinations of 3
Electrodes! Mean Cl Comb
Levels (%) (%) Rule

Pz2,Pz 3,P8 2  75.4 2.4 Sum
Pz1,Pz 3,P8 2  74.8 2.2 Sum
Pz2 ,Pz3 ,P32  74.5 2.4 Sum
Pz 2,Pz 3,P43  74.2 2.2 Sum
Pz2,Pz 3 ,P3 3  74.2 2.2 Sum

Novel - Combinations of 5 ___

Pz1 ,Pz3, P32, P33, P8 1  77.3 2.0 Sum
Pz2,Pz3,P31,P72,P82  77.3 1.5 Sum
Pz1 ,Pz2, Pz3, P33, P82  77.0 1.1 Sum
Pz1,Pz2, Pz3, P32, P33  76.9 1.7 Sum
Pz2, Pz3, P33, P73, P82  76.5 2.5 Sum

Novel - Combinations of 7
Pz1 ,Pz2,Pz3,

P32,P33,P81,P82  79.0 2.2 Sum
Pz1 ,Pz2, Pz3,

P33, P72, P81 ,P82  78.7 2.0 Sum
Pz1 , Pz2, Pz3,

P33, P71 ,P72, P81  78.7 1.6 Sum
Pz1 ,Pz2, Pz3,

P31 ,P33, P72, P81  78.6 1.5 Sum
Pz1 ,Pz2, Pz3,

P32,P33,P72,P81 78.5 2.2 Sum
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intervals of all of the top 5 combinations are overlapping. Also, the sum rule is clearly

the best performing of all combination rules, providing 26 of the 30 best performance

figures shown in the table. Not shown here are larger ensembles containing 9 or more

responses, which start to show a drop off in classification performance. For this reason,

future ensembles will be limited to 7 electrodes or less. Most importantly from this

analysis, it is quite evident that there is complementary information shared between

electrodes that allows for the increase of performance when combined together in an

ensemble.

Knowing that there is complementary information shared between electrodes, it

was necessary to determine whether there was also complementary information shared

between the responses to different stimuli types. To accomplish this, the three-tuples

from each of the stimuli types were combined together in ensembles. Since the number

of three-tuple responses is now 30 (15 novel, 15 target), a full exhaustive analysis is not

practical since there would be over 2 million unique ensembles of 7, 30. To keep the

results manageable, the 25 best performing ensembles of 7 classifiers from each stimulus

type, target and novel, were examined and the 6 most frequently occurring three-tuples

from each stimulus were selected for inclusion in the mixed stimuli ensembles. The

selection method is shown in Figure 4.1 for clarification. N is equal to 6435, n is equal to

25, and M is equal to 57 in this case. An example of how the selection process works is

shown in Figure 4.2.
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Figure 4.1: Method of selection of three-tuples from target and novel for use in mixed
stimuli ensembles. Ensembles have been sorted by performance in decreasing order.
The middle lists of three-tuples have been sorted by number of appearances in top n

ensembles in decreasing order.

The 12 three-tuples were then combined exhaustively in combinations of 3, 5, and

7 once again. The resulting performance figures are shown in Table 4.10 as averages of

10 trials alone with a 95 % confidence interval as well as sensitivity, specificity, and

positive predicted value measures. This time the Dempster-Shafer rule was also included

in the combinations. The electrode labels are appended with a 't' if the response came

from the target stimulus.
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Table 4.10. Best perform ing ensembles for mixed stimuli ensembles of 3,5, and 7
classifiers trained using MLPs for Cohort A.

Target/Novel- Combinations of 3
Mean Cl PPV

Electrodes/Levels (%) (%) Sens (%) Spec (%) (%) Comb Rule
Pz3, P32, P3t1  78.2 2.2 77.1 78.4 70.8 Sum
Pz3, P32, P33  78.0 3.1 82.1 75.6 68.1 Sum
Pz2, Pz3,P33  77.5 3.1 76.8 77.3 66.9 Sum
Pzi, Pz3, P32  77.3 2.0 77.9 71.9 66.6 Sum
Pz3, P33, P3t1  76.5 3.3 76.5 79.2 70.3 Sum

Target/Novel - Combinations of 5
Pz2, Pz3,P32, P33,P3t 1  80.9 2.3 78.2 80.3 73.9 Sum
Pzi, Pz3,P32, P33,P3t 2  80.9 1.9 79.7 79.2 66.1 Sum
Pz1, Pz2,Pz3, P32,P7t 3  80.8 1.2 80.3 81.4 71.8 IDS
Pz3, P32, P33, P3t1 , P7t3  80.4 2.2 80.0 80.8 68.0 Sum
Pz2, Pz3,P3 3 , P3t 1,P7t 3  80.1 2.6 76.7 79.5 68.7 Sum

Target/Novel - Combinations of 7
Pz1, Pz3,P32,P33, P3t 1, P3t 2, P7t 3  81.7 3.8 79.7 84.1 71.3 Sum
Pz3,P3-2,P33,P3t 1, Pzt3, P3t 2, P7t 3  81.5 3.4 76.8 82.7 74.6 Sum
Pz3,P3-2,P3 3,P3t1, P3t2, P4t2, P7t 3  81.4 6.1 78.8 80.3 72.4 DS
Pz3,P32,P8-2,P3 3, P3t 1 ,P4t 2, P7t3  81.2 2.6 80.6 81.9 74.1 DS
Pz3,P32,P33,Pz2t, P3t1, P3t 2,P7t3  81.1 3.6 81.5 80.8 71.0 DS

From this analysis, it is obvious that there is additional complementary

information provided between the two different stimuli types. In each case the

performance from single stimuli ensemble to mixed stimuli ensembles is increased, 75%

to 78% for ensembles of 3 classifiers, 77% to 80.9% for ensembles of 5 classifiers, and

79% to 81.7% for ensembles of 7 classifiers. An increasing performance trend is shown

as additional electrodes are added to the ensemble from 3 to 7, also observed in the single

stimulus ensembles. There is also both target and novel responses included in all top

performing ensembles, with the exception of a few ensembles of 3. Also notable is the

fact that the sum rule still provided the most top performances despite the increased

computaional ost1oftheDempster-Shafer1rule.
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contribute any further complementary information helpful in diagnosing AD, outside of

the parietal region where the P300 is believed to originate. A full exhaustive examination

is still not possible due to the fact that between the two different stimuli, there is a total of

114 different three-tuples, which would yield over 240,000 ensembles of 3 and over 40

billion ensembles of 7 classifiers.

To make the magnitude of the data more manageable, only a portion of the 114

three-tuples were used. By first looking at the responses to novel and target stimili

individually, a more manageable 29,620 unique ensembles of 3 exist for each stimulus.

To select exactly which three-tuples were to be used, the top 25 performing combinations

for each response were examined. Again following Figure 4.1 (with 3-classifier

ensembles, N=29,260), only the top 6 three-tuples most frequently occurring in those 25

top combinations were selected for the full analysis. The selected three-tuples were as

follows: novel, Pz 1-2 Hz, Pz 2-4 Hz, Pz 4-8 Hz, 02 1-2 Hz, Cz 2-4 Hz, T8 1-2 Hz, and

target P3 1-2 Hz, P3 2-4 Hz, FP2 1-2 Hz, F8 1-2 Hz, T7 2-4 Hz, T7 4-8 Hz. The most

frequently appearing electrode response was Pz, with the remaining electrodes scattered

around the head. Already this shows the possibility of complementary information

outside of the parietal region. This selection is shown in Figure 4.2 as an example of the

selection method depicted in Figure 4.1.
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Figure 4.2: Example of how the selection method from Figure 4.1 works.

Before making a final analysis on this set of electrode responses, the necessity of

using leave-one-out training was examined. Up to this point all results were averages of

10 leave-one-out trials. Leave-one-out is essentially just a 71 fold cross validation, and

ultimately very computationally expensive. The possibility that this extent of validation

being unnecessarily expensive was tested by conducting 3-fold, 5-fold, 10-fold, and

leave-one-one training/testing for ensembles of 7 classifiers. The number of trials for this

experiment was increased from 10 to 100 to shrink the confidence intervals to as small as

possible. The resulting ensemble classification performances are shown in the following

4 tables (4.11 through 4.14) with the top five 7-classifier ensembles for each training

method along with a 95% confidence interval and combination rule used.
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Table 4.11: Top performing ensembles of 7 from mixed stimuli using 3 fold cross

validation trained with MLPs for Cohort A.

3-fold cross validation

Electrodes/Levels Mean (%) CI (%) Comb Rule

Pz 2 , Pz3, 021, T8 1, P3t 2, FP2t1, T7t 3  75.7 0.95 Sum

Pz1, Pz 2, Pz 3, 021, T8 1, P3t 2, FP2t1  75.6 0.84 Sum

Pz1, Pz2, Pz3, 021, Cz 2, P3t 2, FP2t 75.5 0.84 Sum

Pz 2, Pz3 , 021, P3t1, P3t 2, FP2t1, T7t 3  75.4 0.84 Sum

Pz1, Pz2, Pz3, 021, P3t 2, FP2t1, T7t 3  75.4 0.84 Sum

Table 4.12: Top performing ensembles of 7 from mixed stimuli using 5 fold cross

validation trained with MLPs for Cohort A.

5-fold cross validation

Electrodes/Levels Mean (%) CI (%) Comb Rule

Pz 2, Pz3, 021, Cz2, T81, P3t 1, T7t 3  78.5 0.69 Sum

Pz 2, Pz3, 021, Cz 2, P3t1, F8t 1, T7t 3  78.4 0.79 Sum

Pz 2, Pz 3, 021, T8 1, P3t1, FP2t1,T7t 3  78.3 0.70 Sum

Pz2 , Pz3 , 021, P3t1, P3t2, F8t1 , FP2t1  78.2 0.66 Prod

Pz2 , Pz 3 , O21, T8 1, P3t1, FP2t1, T7t 2  78.2 0.74 Sum

Table 4.13: Top performing ensembles of 7 from mixed stimuli using 10 fold cross

validation trained with MLPs for Cohort A.

10-fold cross validation

Electrodes/Levels Mean (%) CI (%) Comb Rule

Pz2 , Pz 3, 021, T81, P3t 2, FP2t1 , T7t3  80.8 0.71 Sum

Pz 2, Pz 3, 021, P3t1 , P3t2, FP2t 1, T7t3  80.6 0.69 Sum

Pz2, Pz 3, 021, Cz 2, T8 1, P3t2,T7t3  80.6 0.76 Sum

Pz 2, Pz 3, 021, Cz 2, P3t1 , F8t1 , T7t 3  80.5 0.67 Sum

Pz 2, Pz 3, 021, P3t1 , P3t2, FP2t 1, T7t 2 80.5 0.70 Sum
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Table 4.14: Top performing ensembles of 7from mixed stimuli using leave-one-out or 71
fold cross validation trained with MLPs for Cohort A.

Leave one out

Electrodes/Levels Mean (%) CI (%) Comb Rule

Pz2, Pz3, 021, Cz 2, T8 1, P3t1, T7t 3  82.7 0.60 Sum

Pz 2, Pz3, 021, P3t1, P3t 2, FP2t1 , T7t 2  82.7 0.59 Sum

Pz1, Pz2, Pz3, 021, Cz2, P3t 2, FP2t1  82.6 0.55 Sum

Pz 2, Pz3, 021, T81, FP2t 1, FP2t1, T7t 2  82.5 0.54 Sum

Pz2, Pz3, 021, Cz2, P3t1, F8t1, T7t 3  82.3 0.56 Sum

These results show an increasing trend as the number of folds is increased with

leave-one-out providing the best classification performance. This trend is not surprising

since the leave-one-out method allows for the most possible training data to train the

MLPs while only one patient is tested at a time. The performance increase from 10-fold

to 71-fold is great enough to support continuing analysis using the leave-one out scheme.

The addition of the remaining electrodes' responses outside the parietal region did

provide slightly higher classification performance than the parietal region alone, from

81.7% to 82.7%. Regardless of the size of the increase in performance, this does verify

that there are markers in the EEG outside of the top performing parietal region, which can

contribute to the diagnosis of AD. An argument can be made, however, that the sample

size of 25 ensembles of 3 was not robust enough to select the very best electrode

responses.

To investigate this argument, the 29,620 ensembles of 3 classifers for each

stimulus were again revisited. This time a threshold was drawn for all ensembles

performing better than 75% for the novel combinations and 70% for the target

combinations. These thresholds were chosen to select at least 1,000 unique ensembles

for each stimulus. This adjustment increased the sample from 25 ensembles for each
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stimulus to approximately 1,000 ensembles each for novel combinations and target

combinations. The six most frequently appearing electrode responses were once again

selected according to Figure 4.1 with n equal to roughly 1,000 and N equal to 29,260. To

better visualize how often the different responses appear, a histogram was superimposed

over the electrode distribution map. Three bars were placed at each electrode location,

one for each frequency band with 1-2 Hz on top and 4-8 Hz on the bottom. The intensity

of the color then shows how frequently the electrode/frequency band appeared in the total

number of ensembles of three exceeding the given threshold. Figure 4.3 shows the

histogram for target responses and Figure 4.4 shows the histogram for novel responses.

20o:16~1~100

Figure 4.3: Distribution of most frequently occurring target electrode responses in
combinations of three performing better than 70% using MLPs for Cohort A.

103

.I4

3'" f



www.manaraa.com

fr

11111L

Figure 4.4: Distribution of most frequently occurring novel electrode responses in
combinations of three performing better than 75% using MLPs for Cohort A.

The scalp histograms show that the original electrode site selection was not far off

from the optimal set of electrode/frequency band combinations. Again the top 6 most

frequently appearing three-tuples were selected for each stimulus. The majority of the

three-tuples remained the same, although there were some changes as shown in Table

4.15.

Table 4.15: New selection of three-tuples based on larger sample size as compared to
original selection of three-tunles usingr A'LPs for Cohort A. Jf_____________

Novel Target

Old New Old New

Pz 1-2 Hz Pz 1-2 Hz P3 1-2 Hz P3 1-2 Hz

Pz 2-4 Hz Pz 2-4 Hz P3 2-4 Hz P4 1-2 Hz

Pz, 4-B Hz Pz 4-8 Hz FP2 1-2 Hz FP2 1-2 Hz

02 1-2 Hz 02 1-2 Hz F8 1-2 Hz FB81-2 Hz

Cz 2-4 Hz PB 2-4 Hz T7 2-4 Hz P4 2-4 Hz

TB 1-2 Hz P3 4-8 Hz T7 4-8 Hz T7 4-B Hz
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This slightly modified collection of three-tuples was then used in the same leave-

out-out training scheme as before to see if any significant change was made in

performance. The top 5 results of 100 trials again are shown in Table 4.16 with

confidence intervals, sensitivity, specificity, and positive predicted values.

Table 4.16: Top 5 performing ensembles using the new selection of three-tuples using
MLPs for Cohort A.

Electrode/Frequency/Stimulus Average Cl Sensitivit Specificity PPV Comb
(%) (%) y (%) (%) (%) Rule

Pz 2, Pz 3, 021, P33, F8t 1, FP2t1, T7t 2  82.2 0.58 79.2 85.1 83.1 Sum

Pz 2, Pz3 , 021, P33, P3t1, F8t1 , T7t 2  82.0 0.50 79.0 84.8 82.8 Sum

Pz 2, Pz3, 021, P33, P3t1, FP2tl, T7t 2  81.3 0.64 79.9 82.6 80.1 Sum

Pz3, 021, P33, P3t1, F8t 1, FP2t1, T7t 2  81.1 0.53 78.9 83.1 81.2 Sum

Pz1, Pz2, Pz3, 021, P33, F8t1 , T7t 2  81.0 0.46 78.2 83.6 81.5 Sum

The new selection of electrodes yielded a best performing ensemble of 82.2%.

Overall, the new selection of electrodes performed statistically the same as the old

selection. The new set of electrodes also yielded a peak single trial performance of

91.3% classification percentage. This performance shows there is definitely

complementary information coming from different parts of the scalp as well as in

response to different types of stimuli. This increase also shows there is not necessarily a

"best" set of three-tuples to use, but rather particular regions where the most informative

signals come from.

4.6 DATA FUSION RESULTS FROM COHORT A USING SVMS

A similar process was conducted using SVMs as the training method. An exhaustive

search through all 29,620 ensembles of 3 was performed first. Overall, these

performance numbers were slightly lower than their MLP counterparts resulting in a
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cutoff threshold of 68% for novel and 64% for target to attain approximately 1,000

ensembles for each stimulus. Again scalp histograms were generated to better visualize

the distribution of responses. These histograms can be seen in Figure 4.5 for target and

Figure 4.6 for novel stimuli.

While not identical to the histograms from the MLPs, they are indeed very similar

with common electrode responses occurring frequently regardless of the neural network

used. The top 6 most frequently appearing electrodes were selected as: novel Pz 2-4 Hz,

C3 2-4 Hz, P3 4-8 Hz, Cz 2-4 Hz, P8 1-2 Hz, P8 2-4 Hz, and target FP2 1-2 Hz, P4 2-4

Hz, P8 1-2 Hz, P8 2-4 Hz, FP1 1-2 Hz, FP1 2-4 Hz.

FP1 FP2 350

30

i F3 4 10

0

Figure 4.5: Distribution of most frequently occurring target electrode responses in
combinations of three performing better than 64%0 using SVMs for Cohort A.
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Figure 4.6: Distribution of most frequently occurring novel electrode responses in
combinations of three performing better than 6 8 % using SVMs for Cohort A.

These top 6 electrode responses from each stimulus type were then combined

together into ensembles of 7 classifiers as previously done with the MLPs. The major

difference here is the way the decisions are combined. Since there is no class support

given by the SVM like there is for the MLP, only the selected class can be used to make a

decision. To combine the decisions, simple majority voting is used as the combination

rule for all SVM ensembles. The top 5 performing SVM ensembles are listed in Table

4.17.
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Table 4.17: Top 5 performing ensembles using the top 6 three-tuples each from target
and novel responses using SVMs for Cohort A.

Electrode/Frequency/Stimulus Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

'z2, C32, P33, Cz2, P81, P82, FP1t2 77.46 70.59 83.78 80.00

Pz 2 , C32, P33, Cz2, P8 1, P8t2 , FPlt 2  77.46 70.59 83.78 80.00

Pz 2, 032, P3 3, Cz 2, P8 2, P8t 2, FP1t 2  77.46 73.53 81.08 78.13

Pz2 , 032, P33, Cz 2, P82, FP1t 2, P8t1  77.46 70.59 83.78 80.00

Pz2 , 032, P33, Cz2, P8t2, FP1t 2, P8t1 77.46 70.59 83.78 80.00

As seen earlier, the MLPs slightly outperform the SVMs when using the same

process. The top 5 ensembles all performed at 77.46%, a significant reduction from the

82.7% attained by the MLPs.

A slightly more automated technique of electrode selection was also tested using

the SVMs. The previous method involved an exhaustive search through all ensembles of

3 classifiers for each stimulus, from which the top 1,000 ensembles were examined to

select.6 electrodes for each stimulus. For this new automated method, no ensembles are

created before electrode selection. Rather, the top 15 performing individual classifiers

were selected, which were then used to create ensembles of 7 classifiers. This process

was done for novel and target responses separately first, and then with both stimuli

combined and is shown in Figure 4.7. For Cohort A, M is equal to 57 and for Cohort B,

M is equal to 48.
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Figure 4. 7: Alternate selection method for choosing three-tuples. Each list is ordered by
single classifier performance for each three-tuple in descending order.

The results are shown in Table 4.18 for target, Table 4.19 for novel, and Table

4.20 for the mixed stimuli.

Table 4.] 8: Top 5 performing ensembles using the top 15 three-tuples from target
responses using SVMs for Cohort A.

Electrode/Frequency Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

FP2 1 P42, P83, P81, FPI 1, P73, F81  84.51 79.41 89.19 87.10

FP2 1, P42, P83, P81, FPI 1, P71 ,F81  83.10 79.41 86.49 84.38

FP21, P42 , P8 3 P81 , P71, P73 F81  83.10 79.41 86.49 84.38

FP21, P42, P81, P7 3, F81, P31, P33  83.10 79.41 86.49 84.38

FP2 1, P42, P8 37 P8 1, FPI 1, FPI 2, F81  81.69 79.41 83.78 81.82

Table 4.19: Top 5 performing ensembles using the top 15 three-tuples from novel
responses using SVMs for Cohort A.

Electrode/Frequency Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

Pz2, 032, Cz2, Pz3, P81, Pz1, FPI 1  84.51 82.35 86.49 84.85

Pz2, 032, P33, Cz2, Pz3, Pz1, FPI11  83.10 79.41 86.49 84.38

Pz2, 032, P33, Cz2, P81, Pz1, FPI11  83.10 82.35 83.78 82.35

Pz2, 032, P33, Pz3, P81, Pz1, FPI11  83.10 85.29 81.08. 80.56

Pz2, C32, P33, P72, Pz1, FPI11, Fz2 83.10 79.41 86.49 84.38
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Table 4.20. Top 5 /erforming ensembles using the top 15 three-tuples fron target and
novel responses combined using SVMs for Cohort A.

Electrode/Frequency/Stimulus Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

Pz2, C32, P3 3, FP2t1 , P8t 2, FP1t 2, P8 1  88.73 88.24 89.19 88.24

C32, P3 3, FP2t1 , C42, P8t 2, P81, P4t 2  88.73 88.24 89.19 88.24

Pz2 , C32, P3 3, P8t 2, P8 2, FP1t 2, P8 1  87.32 88.24 86.49 85.71

Pz 2, C32, FP2t1 , P4t 2, P8t 2, P8 1, FPlt 87.32 88.24 86.49 85.71

Pz2 , P3 3, FP2t1, P8t 2, FP1t 2, P81, P8t1  87.32 82.35 91.89 90.32

As seen from these three tables, there is a significant increase over both the

previous method of selecting responses and the best performing MLP ensembles. Both

the target and novel ensembles individually performed better than the MLP mixed

ensembles at 84.51%. When adding the two stimuli responses together, an additional

increase in performance is realized up to 88.73%. In continuation with the MLP

ensembles, all mixed ensembles contain responses from both target and novel stimuli,

which is what attributes to the performance increase. Inclusion of responses to both

stimuli is further evidence that there is complementary information shared between the

responses of the two different stimuli. These numbers also show that the SVMs can

outperform the MLPs in only a fraction of the time. The performances shown here also

exceed the 75% accuracy of community clinics and are not much lower than the 90%

accuracy of an expert neurologist.

4.7 DATA FUSION RESULTS FROM COHORT B USING MLPS

The ensembles for Cohort B using MLPs were started with the exhaustive search through

all ensembles of 3 using the selection method from Figure 4.1 with N=17,296, M=48,

n=l,000. Due to the reduction from 19 to 16 electrode locations, the total number of
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ensembles was reduced to 17,296. Thresholds were set to 70% and 67% to obtain

approximately 1,000 samples from novel and target responses, respectively. The scalp

histograms are shown in Figure 4.8 for target responses and Figure 4.9 for novel

responses. The top 6 electrodes for each stimulus type were: novel Oz 2-4 Hz, P7 1-2

Hz, C3 4-8 Hz, T8 2-4 Hz, F4 2-4 Hz, Oz 1-2 Hz and target Pz 1-2 Hz, Fz 4-8 Hz, F4 4-8

Hz, C3 1-2 Hz, FP2 2-4 Hz, P8 1-2 Hz. This list is different when compared with both

lists from Cohort A. Oz is the predominant electrode in response to novel tones as

opposed to Pz, although Pz was still the most frequently appearing electrode in the target

list.

Figure 4.8: Distribution of most frequently occurring target electrode responses in
combinations of three performing better than 67% using MLPs for Cohort B.
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Figure 4.9: Distribution of most frequently occurring novel electrode responses in
combinations of three performing better than 70% using MLPs for Cohort B.

The results from the top 5 ensembles are shown in Table 4.21. Despite using

slightly different electrode locations from Cohort A, performances were still high.

Performance figures are again shown as averages of 10 trials since MLPs were used with

the top average being 84.68% from the sum rule. The change of top electrode responses

is most likely due to some combination of different equipment, different artifact rejection,

and a slightly different electrode montage used. Overall the performance is still in the

same neighborhood as the performances achieved from Cohort A.
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Table 4.21: Top 5 performing ensembles for Cohort B using the top 6 three-tuples each
from target and novel responses using MLPs for Cohort B.

Electrode/Frequency/Stimulus Average CI Sensitivity Specificity PPV Comb
(%) (%) (%) (%) (%) Rule

0z 2 , P71, C33, F42, C3t1, FP2t 2, P8t1  84.68 2.17 91.94 77.42 80.32 Sum

0z 2, C33, F42, Pzt1, Fzt 3, FP2t2, P8t1  84.19 1.85 92.26 76.13 79.44 Sum

Oz2, C33, T84, Pzt1, Fzt3, FP2t 2, P8t1  84.03 3.11 91.61 76.4 79.59 Sum

0z2, P71, F42, Fzt 3, C3t1, FP2t 2, P8t1  83.87 2.52 92.26 75.48 79.21 Sum

0z2, P71, T8 4, F42, Fzt3, FP2t2, P8ti 83.71 2.34 90.97 76.45 79.57 Sum

4.8 DATA FUSION RESULTS FROM COHORT B USING SVMS

As in Cohort A, Cohort B was next tested using SVMs to see if performance numbers

followed the same trend when comparing MLPs with SVMs. The top 6 most frequently

appearing electrodes were selected from each stimulus by means of an exhaustive search

through ensembles of 3 according to Figure 4.1. The scalp histograms are shown in

Figures 4.10 and 4.11 for target and novel stimuli. To achieve approximately 1,000

results, thresholds used were 69% for target responses and 72% for novel responses. The

selected electrodes were: novel F4 2-4 Hz, Oz 1-2 Hz, T8 2-4 Hz, F3 4-8 Hz, Oz 2-4 Hz,

P8 2-4 Hz and target C3 1-2 Hz, P8 2-4 Hz, FP2 2-4 Hz, C4, 1-2 Hz, P4 4-8 Hz, Pz 1-2

Hz. These locations are similar, but again not identical, to the locations selected for

MLPs.

113



www.manaraa.com

250

200
F3 F4

T7 C3 C4 T8

Pa P4

250

FP 1 FP2

050

Figure 4.11: Distribution of most frequently occurring novel electrode responses in
combinations of three performing better than 72% using SVMs for Cohort B.
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The top 5 ensembles of 7 are shown in Table 4.22. Since SVMs were used, only a

single performance value is shown. The top performing ensemble reached 93.55%, by

far the best performance reached by any ensemble tested thusfar. These numbers also

agree with the previous numbers showing that the SVMs can outperform the MLPs in a

fraction of the time.

Table 4.22: Top 5 performing ensembles for Cohort B using the top 6 three-tuples each
from target and novel responses using SVMs or Cohort B.

Electrode/Frequency/Stimulus Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

F42, T8 2, F3 3, Oz 2, P8 2, C3t1 , FP2t2  93.55 93.55 93.55 93.55

F42, Ozl, T8 2, F33, Oz 2, P82, P8t 2  91.94 87.10 96.77 96.43

F42, Ozl, T8 2, F33, Oz 2, C3t1, P8t 2  91.94 90.32 93.55 93.33

F42, Ozl, T8 2, F33, Oz 2 , P8t 2, Pzt1  91.94 87.10 96.77 96.43

F42, Ozl, T82, F33, P82, C3t1, P8t 2  91.94 87.10 96.77 96.43

Since for Cohort A, performance was higher when just using an ensemble of the

best performing single SVM classifiers, the same procedure according to Figure 4.6 was

tested with Cohort B. Novel and target responses were first tested individually and then

combined together. Table 4.23 shows the results from the target responses, Table 4.24

shows the results from the novel responses, and Table 4.25 shows the mixed stimulus

results.

Table 4.23: Top 5 performing ensembles using the top 15 three-tuples from target
responses using SVMs for Cohort B.

Electrode/Frequency Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

P8 2, C31, Pz1 , C41, P4 3, Oz1 , FP1 1  85.48 77.42 93.55 92.31

P8 2, C31, Pz1 , P43 , Oz 2, Oz, FPI1  85.48 80.65 90.32 89.29

P8 2, C31, FP2 2, Pz1 , P8 3, Oz 2, FPI 1  83.87 77.42 90.32 88.89

P8 2, C31, Pz1 , C41, P8 3, FP1 4, Fz3  83.87 77.42 90.32 88.89

P8 2, C31, Pzl, C41, Oz 2 , Ozl, FPI1 83.87 77.42 90.32 88.89
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Table 4.24: Top 5 performing ensembles using the top 15 three-tuples from novel
responses using SVMs for Cohort B.

Electrode/Frequency Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

Ozl, F42, T8 1, P82, F33, P41, P73  91.94 93.55 90.32 90.63

Oz,, F42, T81, P82, F33, P31, P7 3  91.94 90.32 93.55 93.33

Oz1 , F42, Oz 2, T8 1, P82, F33, P31  90.32 87.10 93.55 93.10

Oz1 , F42, 0z 2, T8 1, P82, F33, P73  90.32 83.87 96.77 96.30

Oz1 , F42, 0z 2, T8 1, F33, P73, P32  90.32 87.10 93.55 93.10

Table 4.25: Top 5 performing ensembles using the top 15 three-tuples from target and
novel responses combined using SVMs for Cohort B.

Electrode/Frequency/Stimulus Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

Ozl, F42, T8 1, P82, F33, FP2t 2, P31  93.55 85.29 91.18 90.63

Ozl, F42, T8 1, P82, FP2t2, Pzt1, P31  93.55 87.88 83.33 82.86

Ozl, F42, T8 1, F33, P8t 2, C3t1, P71  93.55 84.85 85.71 84.85

Oz1 , F42, T81, P8t2, C3t1, FP2t2, P31  93.55 87.50 73.81 71.79

Ozl, F42, 0z 2, T8 1, P82, F33, P8t 2  91.94 85.29 88.24 87.88

For Cohort B, the method of simply selecting the highest performing single SVM

classifiers worked well, but not to the same degree as the exhaustive ensemble of 3

method. The top performance came from the mixed stimulus group at 93.55%. All

ensembles still performed significantly better than the single classifiers and overall

performance figures were higher for Cohort B than for Cohort A.

4.9 20% TEST RESULTS FROM COHORT A

A question was raised as to the validity of the leave-one-out training and test method

used thus far. Since the selection of classifiers to be used in the ensemble is based on the

full leave-one-out training and testing with the full set of data, the final performance is
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not based on previously unseen data. To validate the process, an alternate training and

testing method was tested to see if the previous performance results could be verified.

This new method is basically the same leave-one-out procedure nested inside of a

5-fold cross validation. The original set of data is split into 5 folds of approximately 20%

of the total data set each. Each block of 20% is removed one at a time while the

remaining 80% of the data is used in a leave-one-out fashion as previously done. The

ensembles are generated based on the performance of the 80% of training data. Each

classifier is then retrained with the full 80% of training data and those same ensembles

are then used to test on the 20% of data that were removed and never seen by any

classifier. The difference between this method and the 5-fold method used earlier is the

inclusion of the nested leave-one-out training within the 5-fold cross validation. This

process is repeated five times such that each fold serves as the test data once, with unique

ensembles creates during each fold based solely on the training data of that fold. For

increased validation, the entire process was also repeated 5 times with a completely

random selection of patients in each fold every time.

This new training and testing method was first tried using MLPs on the data from

Cohort A. Based on the superior performance in all other tests, only the sum rule was

used for combinational purposes. The resulting performances for 5 trials, each containing

5 folds is shown in Table 4.26. The numbers are the top performing ensembles from each

trial.
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Table 4.26 Classification performance from 20% test method using MLPs for Cohort A.
Classification Performance (%)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
Fold 1 78.57 78.57 78.57 71.43 85.71
Fold 2 85.71 92.86 92.86 85.71 85.71
Fold 3 92.86 85.71 78.57 92.86 71.43
Fold 4 92.86 92.86 64.29 85.71 78.87
Fold 5 86.67 73.33 86.67 80 93.33
Average 87.33 84.66 80.19 83.14 83.01

Ensembles were created in a similar fashion to the alternate method used in the

SVMs. The 12 three-tuples with the best single classifier performance were selected to

create ensembles of 7 classifiers according to Figure 4.6. The best average for a single

trial was 87.33% with the average across all folds from all 5 trials at 84.24%, which is

right in the range of the leave-one-out method including the entire set of data. The

electrodes used to create the top performing ensemble for each fold are shown in Table

4.27.
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Table 4.27. Three-tuples used in the best ensemble for each trial and fold of the 2O0%
method using MLPs for Cohort A.

Trial I _ _ __1_ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _

Fold I T81  PZ2  P82  PZ3  C3t 2  FP 11  P33

Fold 2 02, P82  PZ3  PZ1  FP1 1  T81  FPI 2
Fold 3 P72  T81  FZ2  PZ2  PZ3  PZt2  02,
Fold 4 PZ3  FP22  P32  P42  PZ2  P3t1  FPI11
Fold 5 P31  FP1 2  FP2t1  FZ2  FP1 1  P32  PZ2

Trial 2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Fold 1 P31  FP1 t1  02, FPI 1  P33  PZ1  PZ2

Fold 2 PZ2  CZ2  P42  P81  P82  FZt 1  P33

Fold 3 FZ2  02t, P42  P31  PZ2  02, PZ1

Fold 4 FP22  P32  P33  FZ1  PZt2  T7t3  O2,
Fold 5 F81  P32  T81  FP2t 1  P4t2  F7t3  043

Trial 3 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

FoldI1 P82  P41  PZ2  F33  P4t 2  P8t 1  T82

Fold 2 P4t2  T81  FZt 1  02, FP1 t1  P3t 1  P7t 3

Fold 3 P33  P32  P41  - F8t 1  FP2t1  - FZ2  T7t3

Fold 4- PZ2  -P8 2  P32  FPI 3  P42  F4t 1  P3t1
FoldS 5 P4t 2  PZ3  PZ2  - FPI 1  01, P42  O2,

Trial 4 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

FoldI1 P31  P33  PZ3  P32  PZ1  P4 2  P7 2

Fold 2 T81  -F8 1  FPI 1  P4 2  PZ 2  CZt2  PZ 3

Fold 3 021 P33  PZ2  042 FPI 1  FPI 2  P82

Fold 4 P72  P4t 2  PZ2  P32  P3t1  P82  FP1 t1
Fold 5 FPI 2  CZ 2  PZ1  03t3  F81  022 P42

Trial 5 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Fold 1 P72  P7t 3  PZ2  T8t2  FP2t 1  P32  P42
Fold 2 - P33  PZ2  CZ 2  PZ3  021 FPI 1  P42

Fold 3 F33  FP2 2  - FPI 2  P82  -PB 3  F8t 1  012
Fold 4 - PZ3  PZ2  P3t1  P82  - FPI 2  FP2t 1  F3t 1
Fold 5 PZ3  - P82  F33  032 -F8 2  P31  P33

To gain a better visual of which three-tuples were selected most often, the scalp
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one-out histograms generated earlier. The combination similar classification

performance and similar scalp histograms from the 20% test and the leave-one-out

methods show that the leave-one-out method was valid in its testing.

Figure 4.12: Scalp histogram from 2 0% test data method from target responses using
MLPs for Cohort A.
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Figure 4.12: Scalp histogram from 20% test data method from novel responses using
MLPs for Cohort A.
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The same process was completed using SVMs instead of MLPs for a comparison.

The results from that test are shown in Table 4.28 with the three-tuples used in each

ensemble listed in Table 4.29.

Table 4.28: Classification performance from 20% test method using SVMs or Cohort A.
Classification Performance (%)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
Fold 1 100 78.57 92.86 100 92.86
Fold 2 78.57 100 100 78.57 92.86
Fold 3 100 92.86 92.86 100 78.57
Fold 4 92.86 92.86 92.86 9286 78.57
Fold 5 80 80 80 80 93.33
Average 90.28 88.86 91.71 90.28 87.23
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Table 4. 29: Three-tuples used in the best ensemble for each trial and fold of the 2O0%
method using SVMs for Cohort A.

Trial I _ _ __1____ _ _ _ _ _ __ _ _ _____ _ _ _ _ ____

Fold 1 P33  CZ 2  P32  P8t1  P4t2  FP1 t1  PZt 2

Fold 2 PZ 2  P4, F81  P8 2  FZ 2  0Z 1  0%t
Fold 3 PZ1  P32  P72  P73  F8t3  P7t3  FP1 t2
Fold 4 PZ2 FZ2  P33  P42  P82  P7t3  FZt1
Fold 5 O2, C04 PZ1  PZ2  F41  P4t2  FP2t2

Trial 2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Fold I FZ2  F42  PZ2  P32  FP2t 2  PZt2  P4t2
Fold 2 PZ2  P33  P82  042 PZl 03t2  FP1 t2
Fold 3 CZ2  PZ1  P33  T83  FP2t 2  FP1 t2  F8t1

Fold 4 P33  P82  CZ 2  P31  PZ2  FP1 t2  02t,
Fold 5 PZ2  P3 2  PZ3  P33  FZ2  P3t2  P3t3

Trial 3 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Fold 1 P31  FPI 2  T72  FP1 t2  FP2t2  FP1 t1  P4t2

Fold 2 PZ 2  C42 CZ 2  PZ 3  P31 P4t 2  FP2t2  -

Fold 3 P32  P33 FZ2  042 F8t2  F7t3  F8t 1  -

Fold 4 PZ2  P31  FPI 2  P3 3  CZ2  P4t 2  FP2t 3  -

Fold 5 PZ2  PZ1  CZ2  T83  02, FP2t1  PZt 1

Trial 4 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

FoldI1 01, PZ 1  - P33  P4 3  P7 2  P8, FP1 t1

Fold 2 - P3 3  CZ 2  - P32  P8t 1  P4t3  - FP1 t1  PZt2
Fold 3 PZ2  P4, F81  P8 2  FZ 2  - Z 1  01 t2

Fold 4 PZ2  FZ2  - P33  P42  P8 2  - P7t3  FZt1
Fold 5 0 2, CZ 2  PZ 1  PZ 2  F41  P4t2  FP2t 2

Trial 5 __ _ _ _ _____ _ _ _ _ __ _ _ _ _____ _ _ _ _ __ ___

Fold I1 -CZ 2  PZ 2  P8, F72  PZt2  FP2t 2  P7t3
Fold 2 C Z2  FPI 3  PZ1  P32  PZ2  P8t 2  FP1 t1
Fold 3 032 P31  P33  PZ2  P32  FP2t 2  P3t3

Fold 4 PZ 2  FPI1  042 P4, O2, PZ 1  P8,
Fold 5 FPI1  032 P8 2  PZ 3  P3 3  P4, P8t 1

As in the leave-one-out training and testing procedure, the SVM ensembles

performed significantly better with a top average trial of 91.71 % and an average across
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SVMs on a single computer, while the MLPs took approximately 45 hours utilizing 10

different computers for a total computational time of 450 hours.

The histograms were again generated and shown in Figure 4.14 for target

responses and 4.15 for novel responses. Again, the histograms are similar to the leave-

one-out histograms.

Figure 4.14: Scalp histogram from 20% test data method from target responses using
SVMs for Cohort A.
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Figure 4.15: Scalp histogram from 2 0% test data method from novel responses using

SVMs for Cohort A.

4.10 20% TEST RESULTS FROM COHORT B

The 20% test method was performed using SVMs on Cohort B. The experimental setup

was identical except the number of subjects in the 20% dropped from 14 or 15 to 12 or

13. The resulting fold performances are shown in Table 4.30.

Table 4.30: Classification performance from 20% test method using SVMs for Cohort B.
Classification Performance (%)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
Fold 1 100 91.67 100 100 100
Fold 2 91.67 91.67 91.67 100 83.33
Fold 3 91.67 83.33 91.67 91.67 100
Fold 4 100 92.31 92.31 100 92.31
Fold 5 91.67 91.67 100 91.67 91.67
Average 95.002 90.13 95.13 96.668 93.462

For Cohort B, again there is slightly higher performance numbers than from

Cohort A. The top trial yielded an average of 96.66% correct classification of the test

data. The overall average was 94.08%, which is also right in the range of the leave-one-
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out training method. The three-tuples used in the best ensembles are shown in Table
4.31.

Table 4.3]. Three-tuples used in the best ensemble for each trial and fold of the 20%o
method using SVMs for Cohort B.

Trial I _ _ _ _ _ _ _ _ __ _ _ _ _ _ __1_ __ _ _ _ _ _ _ _ _ _

Fold I F42  T83 P71  C33 FP2t 2  C4t1  PZt1
Fold 2 PZ3  F43  P71  P82  F33  03t 1  OZt2
Fold 3 T82  0Z, F42  033 FP1 t1  FP2t2  04t3
Fold 4 F42  F33  0Z 2  F41  P~t1  FP2t2  FP2t 1
Fold 5 P71  F33  FPI 2  P82  P81  0Z 2  P8t 2

Trial 2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Fold I F42  F43  P73  P4t2  CZt3  C3t 1  P8t 1
Fold 2 F42  T83  F43  P8, 0Z 2  04t1  FZt2
Fold 3 PZ3 P43  033 0Z 2  F43  P82  P71
Fold 4 P71  0Z 2  0Z, P82  F33  P4t1  P8t2
Fold 5 T83  F42  - P82  T82  P4, 031 FP22

Trial 3 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Foldi - P8, P83  C Z3  P4 3  P4, P4t3  P~t2
Fold 2- P71  P7 3  - F42  P82  P31  P3t 2  FP2t2
Fold 3 P71  033 -PB 2  F33  F42  P4t 1  FP2t2  -

Fold 4 T83  0Z 2  -P8 2  C4t3  P~t2  FP2t 2  P~t1
Fold 5 F42  T73  033 F33  F32  0Z 2  FP1 t1

Trial 4 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Foldi 1 P41  TB1  0Z 2  F4 2  0Z, F3 3  03t1

Fold 2 -PB 2  P31  F42  TB2  - Z2  F32  P4t 3
Fold 3 -PB 2  FZ3  P71  F33  PZt1  P8t 2  03t1
Fold 4 -F4 2  0Z, 033 F43  -TB 3  -P8t 1  -FZt 2
FoldS 5 F33  C033 0Z 2  P43  P73  PZt1  P4t 3

Trial 5 __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _

Foldi1 F4 2  TB3  F3 3  - Z2  F41  P31  PZt1

Fold 2 P82  F42  - Z2  C Z3  PZt 1  03t1  FP2t 2
Fold 3 F42  TB2  0Z, 0Z 2  -PB 3  F33  OZt 2
Fold 4 -PB 2  CZ3  -TB 2  P43  - Z2  FP1 t2  FP2t1
Fold 5 FP23 P32 F42 PB1 PZ3 0Z 2 OZt2
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Figure 4.16: Scalp histogram from 20% test data method from target responses using
SVMs for Cohort B.
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Figure 4.17: Scalp histogram from 20% test data method from novel responses using
SVMs for Cohort B.
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4.11 MIXED COHORT RESULTS

As a final test, the two cohorts were combined together to see how the entire cohort

would perform in terms of classification. This combination brought the total cohort size

to 133 subjects. SVMs were used due to their higher performance on the cohorts

separately as well as the speed of training and consistency of results. Classifiers were

trained individually first on the entire set of three-tuples. Since Cohort B only used 16

electrodes for EEG recording, only those electrodes were selected from Cohort A. In the

case of Oz, the 02 electrode was used from Cohort A. The individual electrode

performances are shown in Tables 4.32 and 4.33 for target and novel responses,

respectively.

Table 4.32: Results for classifiers trained on target stimuli responses from all 16
electrodes at all 3 feature levels for the subjects of both cohorts using SVMs.

Electrode
Response 1-2 Hz 2-4 Hz 4-8 Hz

C3 55.64% 47.37% 57.89%

C4 57.89% 54.89% 48.87%

CZ 53.38% 47.37% 45.86%

F3 48.87% 54.89% 63.16%

F4 53.38% 52.63% 51.13%

FZ 57.89% 60.90% 47.37%

FP1 57.14% 54.14% 41.35%
FP2 58.65% 58.65% 51.88%

OZ/02 58.65% 57.14% 51.13%

PZ 63.91% 60.90% 42.11%

P3 63.91% 63.16% 53.38%

P4 55.64% 65.41% 50.38%

P7 55.64% 55.64% 60.90%
P8 69.17% 48.87% 46.62%

TZ 53.38% 47.37% 50.38%

T8 54.14% 51.88% 61.65%
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Table 4.33. Results for classifiers trained on novel stimuli responses from all 16
electrodes at all 3 feature levels for the subjects of both cohorts using SVMs.

Electrode
Response 1-2 Hz 2-4 Hz 4-8 Hz

C3 59.40% 60.15% 57.89%

C4 50.38% 52.63% 56.39%

CZ 61.65% 49.62% 54.89%

F3 49.62% 37.59% 59.40%

F4 45.11% 57.14% 50.38%

FZ 42.11% 53.38% 57.14%

FP1 48.87% 53.38% 43.61%

FP2 48.87% 52.63% 45.86%

OZ/02 66.17% 56.39% 51.13%

PZ 64.66% 60.90% 54.89%

P3 69.92% 61.65% 61.65%

P4 73.68% 65.41% 59.40%

P7 64.66% 60.90% 54.14%

P8 63.91% 66.92% 57.89%

TZ 53.38% 50.38% 45.11%

T8 60.90% 54.89% 56.39%

Overall, the single classifier performance numbers are close to the performance

numbers from the two cohorts individually. The highest performing target three-tuple

was P8 1-2 Hz at 69.17% and highest performing novel three-tuple was P4 1-2 Hz at

73.68%. The parietal electrodes again have the most performances over 60% as shown

by bold and highlight in the table.

Ensembles were then created using the top 15 three-tuples selected automatically

by the algorithm according to Figure 4.6 and combined exhaustively in ensembles of 7

classifiers. Ensembles were first created independently for each stimulus, and then for

both stimuli together. Table 4.34 shows the results from target responses, Table 4.35 for

novel responses, and 4.36 for combined responses.
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Table 4.34. Top 5 performing ensembles using the top 15 three-tuples from target
responses using SVMs for both cohorts.

Electrode/Frequency Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

P81, P42, P31, F33, T83, Fz2, FP2 1  78.95 72.31 85.29 82.46

P8 1, P42, P32, F33, P7 3, Fz2, FP2 1  78.95 73.85 83.82 81.36

P8 1, P31, P32, F33, T83, P7 3, FP2 2  78.95 70.77 86.76 83.64

P8 1, P32, F33, T83, P7 3, FP2 1, FP2 2  78.95 75.38 82.35 80.33

P8 1, P42, Pz1, P3 1, F33, T83, FP2 2  78.20 69.23 86.76 83.33

Table 4.35: Top 5 performing ensembles using the top 15 three-tuples from novel
responses using SVMs for both cohorts.

Electrode/Frequency Performance Sensitivity Specificity PPV
(%/) (%/) (O/) (%)

P4 1, P3 1, P8 2, 0z1, P4 2, P7 1, P8 1  80.45 75.38 85.29 83.05

P41, P31, P82, 0z1, P71, P81, Pz2  79.70 75.38 83.82 81.67

P41, P31, Pz1, P33, Cz1, P72, T81  79.70 70.77 88.24 85.19

P41, P31, P82, Pz1, Pz2, T81, C3 2  78.95 72.31 85.29 82.46

P41, P31, P82, 0z1, P42, P81, P7 2  78.20 73.85 82.35 80.00

Table 4.36: Top 5 performing ensembles using the top 15 three-tuples from target and
novel responses combined using SVMs for both cohorts.

ElectrodelFrequency/Stimulus Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

P41, P8t1, P82, 0z1 , P4 2, P4t2, Pz1  82.71 74.65 81.69 80.30

P41, P8t1, P82, 0z1 , P42, P4t2, Pzt1  81.95 70.67 79.22 76.81

P41, P8t 1, P8 2, 0z 1 , P4 2, P4t2 , P3t3  81.95 70.67 78.48 75.36

P41, P8t 1, P82, 0z1 , P4 2, P4t2, P3t2  81.20 70.27 78.67 76.47

P4 1, P3 1, P8t2 0z1, P4 2 , P4t2 , Pz1 81.20 69.23 78.67 77.14
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the boundaries drawn by the SVM, less intricate boundaries created by the SVM resulting

in more misclassifications, and other problems like noisy patient data, which could have

been brought on by the different artifact rejection schemes. On the positive side,

however, the best performance of 82.71% is still significantly higher than the local

physician average of 75%.

4.11.1 CROSS COHORT FEATURE SELECTION

The next test was to see how each cohort would perform during testing when the other

cohort was used for training (ie. train on Cohort A and test on Cohort B). This analysis

was completed using the best performing ensembles from each of the respective cohorts.

First, classifiers were trained using data from Cohort B. The best ensembles were

selected according to table 4.25. These ensembles were then used to test on the data from

Cohort A. The results are shown in Table 4.37.

Table 4.37: SVM classifiers trained on Cohort B and tested on Cohort A using the best
ensembles from Cohort B.

Electrode/Frequency/Stimulus Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

Ozl, F42, T8 1, P82 , F33, FP2t 2, P31  46.48 41.03 45.95 44.44

Ozl, F42, T81, P8 2, FP2t 2, Pzt1 , P31  60.56 48.89 56.76 57.89

Oz,, F42 , T8 1, F33, P8t2, C3t1 , P71  42.24 43.90 32.43 41.86

Oz,, F42 , T8 1, P8t2 , C3t1 , FP2t 2, P31  56.34 53.06 45.10 48.15

Ozl, F4 2, Oz 2, T8 1, P8 2 , F33 , P8t 2  59.15 47.73 56.76 56.76

The resulting performances from the ensembles are significantly lower than the

low 90% range exhibited in Table 4.25. Only one ensemble performed better than 60%,

with two of the five performing only in the 40% range. These low performances could be
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due to either differences in the data based on the collection and artifact removal or

physiologic differences in the data itself from the two different cohorts.

The same process was used to train classifiers using Cohort A and test Cohort B

using the best performing ensembles from Table 4.20. The results are shown in Table

4.38.

Table 4.38: SVM classifiers trained on Cohort A and tested on Cohort B using the best
ensembles from Cohort A.

Electrode/Frequency/Stimulus Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

Pz 2, C32, P33, FP2t1 , P8t 2, FP1t 2, P8 1  59.68 70.97 48.39 57.89

C32, P33, FP2t1, C42, P8t 2, P81, P4t 2  59.68 71.43 38.71 56.82

Pz 2, C32, P33, P8t 2, P82, FP1t 2, P81  66.13 63.64 64.52 65.63

Pz 2, C32, FP2t1, P4t 2, P8t 2, P81, FP1t1  58.06 55.88 54.84 57.58

Pz 2, P33, FP2t1, P8t 2, FPlt 2, P81, P8t1  70.97 61.54 64.52 68.57

The performance numbers for this test are significantly higher with the lowest

performance being 58% and the highest performance at almost 71%. These performance

figures are still considerably lower than the high 80% range shown in Table 4.20, due to

the same reasons.

4.11.2 CROSS COHORT REANALYSIS

Previously, only the top five ensembles were examined from each of the alternate

cohorts. To validate any differences, a complete reanalysis was performed for each

cohort. For this experiment, one cohort was used to fully train classifiers on all electrode

locations from both target and novel. Those classifiers were then tested on the alternate

cohort. The top 15 performing classifiers based on this training were then combined into

ensembles of seven classifiers. This process mimics the process used for each cohort
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previously, with the only change coming from the test data. SVMs were used as the

classifier and ensembles were created for each stimuli separately first, and then both

stimuli combined. The results for training on Cohort B and testing on Cohort A are

shown in tables 4.39-41.

Table 4.39: Top 5 performing ensembles using the top 15 three-tuples from target
responses using SVMs trained on Cohort B, tested on Cohort A

Electrode/Frequency Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

P3 1, F3 2, Fz2, P81, Ozl, P33, F3 3  77.46 79.41 75.68 75.00

P41, F32, P81, Pz1 , T8 3, P33, F41  77.46 79.41 75.68 75.00

P4 1, F32, P81, P71, T8 3, P33, F33  77.46 88.24 67.57 71.43

P3 1, P41, F32, P81, T83, P33, F33  76.06 79.41 72.97 72.97

P31, P41, F32, P81, P33, F33, F41  76.06 82.35 70.27 71.79

Table 4.40: Top 5 performing ensembles using the top 15 three-tuples from novel
responses using SVMs trained on Cohort B, tested on Cohort A.

ElectrodelFrequency Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

Pz1 , P41, P82, P31, Oz, Cz1 , P81  85.92 91.18 81.08 81.58

Pz1 , P41, P82, P31, Ozl, Cz1 , Oz2  84.51 91.18 78.38 79.49

Pz1 , P4 1, P8 2 , P3 1, Oz, P81, 0z 2  84.51 91.18 78.38 79.49

Pz1, P4 1, P31 , P42, Cz 1, P8 1, Oz2  84.51 88.24 81.08 81.08

Pz1 , P4 1 , P4 2 , C31, P73 , P43 , Oz 2  84.51 91.18 78.38 79.49

Table 4.41: Top 5 performing ensembles using the top 15 three-tuples from target and

novel responses combined using SVMs trained on Cohort B, tested on Cohort A.

Electrode/FrequencylStimulus Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

Pz1 , P41, P3t, P8 2, P4t1 , Fzt2 , Pz 2  83.10 73.81 71.43 72.09

Pz1 , P81 , P3t1 , P8 2, P3 1, F3t 2, P8t 83.10 74.42 70.21 69.57

Pz1 , P3t1 , P82, P31, P4t1 , Fzt2, Pz 2  83.10 70.45 71.43 72.09

Pz1 , P3t1 , P8 2, P3 1, P4t1 , P8t1, Oz 83.10 70.45 71.74 70.45

P41, P81 , P3t1 , P8 2, P4t1 , P8t1 , Oz 83.10 78.57 64.58 66.00
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The five best performing ensembles are listed in each table. Performances

reached into the mid 80% range for the responses to novel stimuli and dropped slightly

when responses to novel and target were combined. The top performance of almost 86%

is close to the best performances from experiment using Cohort A for training and

testing, which shows that the possibility of combining the two cohorts is definitely

feasible since the performance decrease was not too significant.

The same process was used for training on Cohort A and testing on Cohort B.

Results are in Tables 4.42-44 for novel, target, and combined stimuli.

Table 4.42: Top 5 performing ensembles using the top 15 three-tuples from target
responses using SVMs trained on Cohort A tested on Cohort B

Electrode/Frequency Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

P81, F33, Fz1 , P31, Pz1 , P43, Cz 3  83.87 96.77 70.97 76.92

P81, F33, Fz1, Pz1 , Ozl, P43, P82  82.26 90.32 74.19 77.78

P8 1, F33, Fz1, P71, Pz1 , Cz1 , P43  80.65 90.32 70.97 75.68

P8 1, F33, Fz1, P71 , P8 3, Cz1, Cz3  80.65 90.32 70.97 75.68

P81 , F33, Fz1, Pz1, P3 3, Cz1, Cz3  80.65 83.87 77.42 78.79

Table 4.43: Top 5 performing ensembles using the top 15 three-tuples from novel
responses using SVMs trained on Cohort A tested on Cohort B

Electrode/Frequency Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

P8 1, Oz,, Pz1, Cz1, P4 1, P42, P33  83.87 83.87 83.87 83.87

P8 1, Oz,, Cz1 , P8 2 , P41, P3 3, T8 1  83.87 80.65 87.10 86.21

P8 1, Oz1 , P8 2 , P4 1, C43, P3 3 , Pz 2  83.87 83.87 83.87 83.87

P81 , Oz1 , P41, P42, C43, P3 3, Pz2  83.87 80.65 87.10 86.21

P81 , Oz, P8 2, P4 1, P7 1, P33, PZ2 83.87 83.87 83.87 83.87
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Table 4.44: Top 5 performing ensembles using the top 15 three-tuples from target and
novel responses combined using SVMs trained on Cohort A tested on Cohort B

Electrode/Frequency/Stimulus Performance Sensitivity Specificity PPV
(%) (%) (%) (%)

P8t1, P81, Oz1 , Cz1, P82, F3t 3, Fzt1  91.94 81.58 72.50 73.81

P8t1, P81, Oz1 , Cz1, F3t 3, Fzt 1, P4 1  91.94 85.71 71.43 71.43

P8t1, P81, Ozl, Cz1, F3t 3, Fzt1, P42  90.32 81.58 68.18 68.89

P8t1, P81, Oz,, Cz, F3t 3, Fzt1, P3t1  90.32 86.11 62.22 64.58

P8t1 , P81, Ozl, P82, F3t 3, Fzt1 , P41  90.32 83.78 71.79 73.81

The performances again increased from the selection of 5 best ensembles

previously. The top performance of almost 92% is also close to the performance of

Cohort B by itself. This high performance further enforces the ability to combine the two

datasets.
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CHAPTER 5

CONCLUSIONS

The primary application in this work was the creation of an automated means of

Alzheimer's disease diagnosis from a cohort of AD patients and cognitively normal

subjects. Two separate cohorts were used, each tested at different facilities by different

technicians, with unique means of artifact rejection. From there, ERPs were averaged

together and features were extracted from responses to target and novel stimuli using

wavelet analysis to provide coefficients from three frequency bands, 1-2 Hz, 2-4 Hz, and

4-8 Hz. Automated classification was performed using MLP and SVM neural networks

to create classifiers, which were then combined using decision level data fusion to

provide final classifications.

5.1 SUMMARY OF ACCOMPLISHMENTS

Previous work focused on only specific electrodes rather than a full exhaustive analysis

of all data available. The main focus was the parietal region, although the combination

scheme was still not completely exhaustive. In this portion of the study, all available data

was examined from the previous cohort as well as an additional cohort. Ensembles,

therefore, contained data from 19 electrodes for Cohort A and 16 electrodes from Cohort

B.

Trends from previous studies were still examined including novel responses

performing better overall than their target response counterparts. The parietal region was
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still the most informative region of the head when compared with the other regions in

both cohorts. There is, however, significant contribution from other regions in the head

that were not able to be seen in previous work.

The metric used for comparison was the diagnostic accuracy of local physicians.

This figure of 75% diagnostic accuracy would serve as the very minimum performance

the algorithm must achieve to accept its validity. The algorithm presented here yielded

performances of 93.6% for Cohort B and 88.7% for Cohort A using SVMs and 84.7% for

Cohort B and 82.2% for Cohort A using MLPs, all of which significantly exceed the goal

of 75%.

In almost every case the SVMs performed better than the MLPs using the same

algorithm with the neural network being the only variable. In addition, the nature of the

SVM allows for identical performance every time it is run, unlike the MLP, which uses

random initialization every time and provides slightly different performances. The SVM

also completes its training in a fraction of the time it takes to complete with the MLP,

which allows for faster, more accurate diagnoses. Based on this information, future work

on this project should focus primarily on the SVM as the classifier of choice.

All previous work in this study was done using only a leave-one-out training

method. In this method, each subject used during the testing phase was tested by a

classifier that had not previously seen that patient. This method allows for the most

possible training data to be used to train the classifier before testing. This approach is

completely valid when looking at a single classifier. A question arose when this method

was still used for ensemble selection. Since the electrodes used in the ensemble were

selected based on their single classifier performances, the test performance of the
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ensemble is not entirely based on previously unseen data. This dilemma is despite the

fact that the ensemble testing was still done in a leave-one-out fashion where the

particular test patient was still unseen by the all the classifiers in the ensemble.

A second evaluation structure was created to test the hypothesis that the ensemble

selection was being affected by including all patients in the single classifier performance

numbers. A 5-fold process was used where by 20% of the total cohort was excluded

from initial training and electrode selection and only used for testing by the ensemble.

When comparing performance numbers of each algorithm, there is very little difference.

The MLP version using Cohort A provided 82.2% using leave-one-out and 83.7% using

the 20% test data. The SVM version using Cohort A provide 88.73% using leave-one-out

and 89.7% using 20% test data. The SVM version using Cohort B provided 93.6% using

leave-one-out and 94.1% using 20% test data. Even more important are the scalp

histograms. When comparing the electrode selections from leave-one-out versus 20%

test using the same neural network, cohort, and stimuli, the histograms are very similar.

The only differences between the two are the number of trials used, although the

concentrations are all in the same electrode areas.

This experiment shows that the 20% test method selected almost identical

electrode locations to the leave-one-out method, which means that the leave-one-out

selection is completely valid and the 20% method adds additional computation, which is

unneeded. Secondly, and more importantly, this shows that there are specific electrodes,

which constantly provide better performance than others regardless of the training

method used for selection.
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This second observation is important in selecting the "best" ensemble to use for

the algorithm. While, the performance numbers are important in addressing how

affective the algorithm is in diagnosing between AD and normal, it's the regions of the

head where the most informative signals are being generated that is of the most value.

This analysis gives a better representation of where the discerning information is being

generated from within the brain, which could lead to a better selection of recording sites

for a future implementation and an idea of specifically which electrodes to choose for

ensemble creation.

The following two Figures show all the scalp histograms side by side from each

stimulus. Figure 5.1 shows the target histograms and Figure 5.2 shows the novel

histograms. In each figure the histograms are arranged as follows: top left is Cohort A

MLPs, bottom left is Cohort A SVMs, top right is Cohort B MLPs, and bottom right is

Cohort B SVMs.
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Figure 5.2: Novel scalp histograms from both cohorts.

There are definitely differences in the plots, specifically when comparing cohorts.

It's clear that the electrodes in the parietal and occipital regions are consistently

appearing along with the frontal most electrodes, FP1 and FP2. The rest of the electrodes

seem to be more cohort dependant. This trend was also very evident when the two

cohorts were combined. Again, the parietal electrodes were the best performing and
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electrodes to combine together to diagnose AD, the parietal and occipital regions should

be the focus for diagnosis with the possible inclusion of the FP electrodes. The other

electrodes are too sporadic to be considered reliable, despite showing signs of providing

some complementary information. This information comes as expected since the P300

and the majority of memory activity originate in the parietal region. This trend is further

emphasized in Figures 5.3 and 5.4, which show the most frequently appearing electrodes

for target and novel stimuli, respectively, with no relation to frequency band.

Figure 5.3: Most frequently appearing electrodes in response to target stimuli with no
relation to frequency bands.
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Figure 5.4: Most frequently appearing electrodes in response to novel stimuli with no
relation to frequency bands.

This portion of the study has shown significant improvement in classification

accuracy over previous versions of the algorithm. Stepenosky, in 2006, showed a

maximum average performance for the entire 71 patient Cohort A of 83.1% using MLPs.

The version of the algorithm presented in this work shows an increase of over 5% to

88.7% using SVMs. This increase is both statistically and clinically significant. The

algorithm was also able to achieve a classification accuracy of 93.6% for Cohort B.

Since this is the first application of the algorithm to this second cohort, that number will

serve as the benchmark for future versions of the algorithm.

5.2 SOURCES OF ERROR

The primary source of error in this study comes from the diagnostic process of the

patients included in the study. The classes used for each subject were derived from

clinical evaluation, which as stated earlier is at best 90% accurate when performed by an

expert neurologist. Since there is no way to improve upon this accuracy without
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postmortem analysis, that 90% accuracy is the 'gold standard' for diagnosis of the

subjects. As a result, the diagnoses made for all subjects are assumed to be 100%

accurate for the testing within this study. This assumption could lead to inherent error if

the original diagnosis was in fact incorrect. Inclusion of autopsy findings at a later date

could potentially increase the performance and validity of all results.

Other errors could lie within the classification algorithms as well as the testing

procedures. The classifiers themselves could be a source of error if the most ideal

parameters were not selected. In addition, the MLP allows for more error since the

initialization is random each time it is trained. The error goal was also set to 0.01 for all

trials, however, that error goal was seldom reached.

As far as the testing procedures, the two different cohorts were tested at different

facilities using different equipment. These differences could lead to variations in the data

between the two cohorts. The data from Cohort B was also cleaned of artifacts by an

automated procedure rather than by an expert electroencephalographer, which could lead

to data instances either being removed that shouldn't be removed or instances remaining

in the data that should have been removed. An analysis of the automated removal records

by an expert could help to alleviate some this error.

5.3 RECOMMENDATIONS FOR FUTURE WORK

At this point, the ERP analysis between AD and normal subjects has been exhausted for

the most part. While more subjects are still currently being recruited for Cohort B,

analysis should be shifted to other areas of the study. In addition to the AD and normal

subjects, Cohort B also includes Parkinson's disease patients and MCI patients. As the
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size of these cohorts is increased, focus should be directed towards 3 and 4-class

classification algorithms based on the results of the 2-class algorithm. Cohort B data

acquisition protocols also include other biomarkers besides the EEG. Analysis of these

other biomarkers including MRI, CSF, and PET scan data is critical to developing the

most accurate and complete algorithm possible.
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APPENDIX A

ERP GRAND AVERAGES FROM COHORT A

The graphs included here are the grand averages from each electrode for Cohort A. In

each figure the top graph is the response to target stimuli and the bottom graph is the

response to novel stimuli. Normal subjects and AD patients are shown on the same

graph.
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Figure A. 1: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the C3 electrode from Cohort A.
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Figure A.4: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the F3 electrode from Cohort A.
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Figure A.6: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the F7 electrode from Cohort A.
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for the FP2 electrode from Cohort A.

x 10"s

4r



www.manaraa.com

S10-eTrgtF

r" -. ,
I

,

_y02 -0.1 0 0.1 0.2 0.3 0.4
Time (s)

1n'° Novel FZ

0.5 0.6 0.7 0
AD

-~°- Normal

Time (s)

Figure A.1O: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the FZ electrode from Cohort A.
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Figure A. 14: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the P4 electrode from Cohort A.
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APPENDIX B

ERP GRAND AVERAGES FROM COHORT B

The graphs included here are the grand averages from each electrode for Cohort B. In

each figure the top graph is the response to target stimuli and the bottom graph is the

response to novel stimuli. Normal subjects and AD patients are shown on the same

graph.
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Figure B. 1: Grand average ERP from responses to target (top) and novel (bottom) stimuli
for the C3 electrode from Cohort B.
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Figure B.1O: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the P3 electrode from Cohort B.
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Figure B. 12: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the P7 electrode from Cohort B.
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Figure B. 13: Grand average ERP from responses to target (top) and novel (bottom)
stimuli for the P8 electrode from Cohort B.
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